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Filamentous active matter: Band formation, bending,

buckling, and defects

Gerard A. Vliegenthart*, Arvind Ravichandran, Marisol Ripoll, Thorsten Auth, Gerhard Gompper

Motor proteins drive persistent motion and self-organization of cytoskeletal filaments. However, state-of-the-art
microscopy techniques and continuum modeling approaches focus on large length and time scales. Here, we
perform component-based computer simulations of polar filaments and molecular motors linking microscopic
interactions and activity to self-organization and dynamics from the filament level up to the mesoscopic domain
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level. Dynamic filament cross-linking and sliding and excluded-volume interactions promote formation of bundles
at small densities and of active polar nematics at high densities. A buckling-type instability sets the size of polar
domains and the density of topological defects. We predict a universal scaling of the active diffusion coefficient
and the domain size with activity, and its dependence on parameters like motor concentration and filament per-
sistence length. Our results provide a microscopic understanding of cytoplasmic streaming in cells and help to

develop design strategies for novel engineered active materials.

INTRODUCTION

Active systems are driven by nonthermal, energy-consuming pro-
cesses that lead to very rich collective behavior (1-4). Examples are
found from macroscopic length scales (fish and birds) to microscopic
length scales (bacteria and algae) to even subcellular structures like
the cell’s cytoskeleton. The cytoskeleton is composed of filaments that
are dynamically interconnected by passive and active cross-linkers.
It provides mechanical stability to biological cells, acts as a force-
generating element, and serves as a track network for active intra-
cellular transport (5, 6). Moreover, its dynamics generates internal
motion of the cytoplasm that secures nutrient availability and the
distribution of organelles (7). Fundamental knowledge about the
relationship between cytoskeleton structure and dynamics and about
the molecular driving forces helps to obtain a deeper understanding
of cellular function and dysfunction in vivo and to design active gel
materials, e.g., artificial cells (8) in vitro. Experimental studies of
purified cell extracts containing cytoskeletal filaments and molecular
motors show a plethora of dynamical phenomena. The long, thin,
and stiff filaments self-organize into various liquid crystalline struc-
tures depending on filament concentration, motor type, and presence
of passive cross-linkers. In vitro experiments on microtubule-kinesin
and actin-myosin mixtures, where polymer-induced depletion inter-
action drives bundling of filaments and confines them at an oil-water
interface, have shown exciting nonequilibrium behaviors, such as
persistent spontaneous flows, turbulent-like motion, and the forma-
tion of highly mobile +1/2 topological defects, a characteristic signa-
ture of active nematics (9-13).

Various theoretical modeling approaches (14-22) have been used
to reproduce and explain the nonequilibrium features of cytoskeletal
filament-motor mixtures. Continuum descriptions based on active
gel theory have been amazingly successful to capture essential aspects
on the mesoscopic scale, particularly the formation and dynamics
of topological defects (14, 15, 17-20). In this approach, activity is
incorporated into a model of passive nematics by an active current
J =V - Q, where Q is the nematic tensor and { is the activity strength.
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This active current originates from the active force dipoles, which
generate a particle flux along or against the nematic curvature (23, 24).
For coarse-grained descriptions of active nematics at the filament
level, nematic symmetry and activity are difficult to reconcile. Models
of rods expanding in length and breaking in periodic intervals rep-
resent growing filament bundles (25) and have been used, as well as
models of filaments that intermittently move forward and backward
(26). At the microscopic level of filaments and motor proteins, the
system is not nematic but polar. Studies of concentrated systems
modeling polar filaments and molecular motors show the formation
of polar bands and persistent motion generated at the boundary be-
tween the bands, where the filaments are antialigned (16, 27-30).
The generation of extensile stresses occurs predominantly at the inter-
faces between polar domains and can drive the instability of a global
nematic phase. This has been shown by a multiscale modeling ap-
proach that uses filament-based computer simulations of rods to
provide parameters for a continuum polar-fluid model (16, 28, 29).
An important question arising from all the previous studies is
the role of hydrodynamic interactions. It has been shown that sys-
tems with extensile force dipoles (corresponding to pusher-type
hydrodynamics) destabilize the nematic order, whereas contractile
force dipoles (corresponding to puller-type hydrodynamics) stabi-
lize it (1, 19, 23, 24). These hydrodynamic stresses are at the origin
of the active current in active nematic theory. However, in the ab-
sence of hydrodynamic interactions, active forces can also render
the nematic phase unstable, like in experiments (31) and simula-
tions (32) of granular ellipsoids and in a phenomenological contin-
uum model for overdamped active nematics (33). These different
approaches raise several pertinent questions: What is the relevance
of polarity in active gels? Are the individual filaments the appropriate
fundamental units of modeling, or should it rather be the filament
bundles? Are the predictions of active gel theory and of polar active
filament descriptions consistent? Which advantages can a more micro-
scopic approach provide? What is the role of filament flexibility?
Here, we study the emergent structures, persistent motion, and
instability of the aligned nematic phase in mixtures of polar semi-
flexible filaments and molecular motors. Two-dimensional Langevin
dynamics simulations are designed to mimic experimental systems of
filament-motor suspensions confined at oil-water interfaces (9, 12, 13).
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Our modeling approach bridges length scales from nanometer-sized
molecular motors to micrometer-long semiflexible filaments. The
results presented here show that the average motor-induced force
on antiparallel filaments is a robust measure for the activity in the
system and that hydrodynamic interactions are not necessary to de-
scribe the system dynamics. In an initially globally nematic filament
suspension, the generated active stresses induce filament sorting in
polar bands, a buckling-type instability, the formation of nematic-
type topological defects, and—at steady state—the emergence of com-
plex flow patterns. The dynamics of individual filaments is characterized
by active Brownian particle-like motion. The active-force depen-
dence of several inherent length scales, like the domain size, the length
of quasi-ballistic motion, and the effective persistence length of sin-
gle filaments, all follow a universal inverse square root dependence.
Furthermore, we show how active nematic behavior emerges with
increasing filament concentration. Where applicable, the predictions
from our “polar active nematics” description agree well with those
of active nematic theory.

The simulations presented here are based on a model of semi-
flexible filaments of contour length L and persistence length €, in
two dimensions. The filaments consist of ng beads of diameter o
connected by stiff harmonic springs with rest length ao = L/(n; — 1),
where ay = 6. The filament area fraction ¢ = nengno2/4 Lﬁox is varied

. W) W)
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by changing the number of filaments, 7y, or the box size Lyox. Molecular
motors are modeled by harmonic springs with rest length r and spring
constant ky,. They attach to neighboring filaments with rate I',. Motors
walk in the direction of the filament polarity with step length a.
The step rate is proportional to the probability p>, to move a motor
arm, which sets the bare motor velocity vy = ag p?n/ At, where At is
the motor time step. Motors detach when they reach the end of a
filament, when they encounter a motor already bound, or when
their length exceeds a threshold 7. In the following, we use rescaled
quantities: filament aspect ratio I = L/c, motor-to-filament
ratio iy, = ny/nyg, persistence length Ep = £,/L, motor spring con-
stant Ky = kn ré/kB T (kgT is the thermal energy), filament fric-
tion ¥ = y/ky 6t (8t is the simulation time step), box size Lpox =
Liox/L, and time ¥ = tDo/L?, with the single passive-filament
translational diffusion coefficient D,. For details, see Materials and
Methods.

RESULTS

Activity drives the formation of polar domains

The microscopic origin of filament motion is the dynamic cross-
linking of nf polar filaments by n,,, molecular motors. The motors
walk in the direction of polarity p on the filaments and induce sliding
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Fig. 1. Self-organized structures and dynamics of motor-filament mixtures driven by sliding of antiparallel filaments. (A and B) Sketches of two consecutive motor
steps when filaments are oriented (A) parallel and (B) antiparallel. The initially relaxed gray motor steps toward the filament polar end, it relaxes, and it makes a second
step on the other filament and relaxes again. This results in net filament motion only for antiparallel motors. (C and D) Simulation snapshots for an initially disordered
nematic system. The thin black box indicates the central simulation cell. (C) Short-time band formation and (D) long-time disordered structures. Filament colors indicate
their orientation, illustrated by the color axis. (E) Number of antiparallel motors as a function of the persistence length £,, and the bare motor velocity, measured by pﬁl.
(F) Peclet number as a function of the active force F 5. in Eq. 1. The table shows the parameter combinations used in (E) and (F). In all cases, (¢, L) = (0.66, 20).
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forces in direction —p. If two filaments are polar aligned and two
consecutive motor steps occur on the two different filaments, the
motors induce no net filament motion (see Fig. 1A). However, if the
filaments are antialigned, the motors get stretched and net filament
motion results (see Fig. 1B). The n, motors are classified as nf,
“parallel motors” that connect parallel filaments in the interior of
domains and nif “antiparallel motors” that dynamically cross-link
and slide filaments at the interfaces between oppositely oriented do-
mains relative to each other.

When motors are added to an initially globally nematic suspen-
sion of filaments with random left-right filament orientation, the
motor-induced sliding forces first lead to a rapid sorting of filaments
into narrow polar bands with antiparallel alignment at the domain
boundaries (see Fig. 1C). In time, these polar bands coarsen. When
the activity is large enough, a buckling instability leads to disordered
configurations of polar domains with topological defects (see Fig. 1D).
If the activity is too small or the filaments are too stiff, the steady
state consists of stable parallel bands (see fig. S1). Movie S1 illustrates
the polarity-sorting process in more detail. Movie S2 shows the entire
dynamical evolution from the initial nematic state to the stationary
state. Because in this system both nematic alignment and polar sort-
ing play an important role, we call it an “active polar nematic.”

Steady-state filament dynamics emerges from a complex inter-
play between various filament and motor properties. For example,
the number of antiparallel motors is an important factor driving the
filament dynamics and the suspension structure. We quantify the
activity by the motor force per filament

F act = (1)

= n?fl?mc,—':)‘— 1)/nf
with the average relative extension /7o — 1 of the antiparallel motors.
In steady state, the motor force is balanced by an effective medium
friction with friction coefficient yeg o< Dy L the parallel filament
velocity v) is defined as v = lim; _, o( — p(f) - (x(t + 1) — ¥())/T)s,
where r(f) and p(t) are the position and the unit tangent vector of
the filament center, respectively, and 1 is the lag time (see fig. S2).
Note that the active force F o is proportional to niP, which itself
depends on 1, the persistence length €, and the motor stepping rate
po (see Fig. 1E); thus, the same activity can be achieved by different

parameter combinations. The parallel velocity and, thus, the Peclet
number Pe = v L/Dj increase linearly with the activity in the system
V| o< F ot (see Fig. 1F). This demonstrates that Eq. 1 provides an
appropriate identification of the active forces. For systems that form
regular bands, the velocity profile within the bands (see fig. S3, A
and B) shows that for fixed F,, the velocity is independent of €,
(see fig. S3C) but does depend on the width of the bands (see fig.
S3D). For wide bands, the velocity decays to zero over a distance
between one and two filament lengths as is also confirmed by an
explicit calculation of the velocity correlation length from the veloc-
ity correlation function as outlined in figs. S6 to S8.

Single-filament motion and active diffusion

We first characterize single-filament motion in dense systems in the
active steady states by calculating the filament orientational auto-
correlation functions and filament center-of-mass mean squared
displacements (MSDs). The latter can be measured experimentally
by fluorescently labeled tracer filaments or by using tracer particles
that can be tracked. For nonzero 7, and intermediate times, the
filaments follow essentially ballistic trajectories, where the MSD o<
vﬁ  is a signature of this active persistent motion. At long times,
the filaments lose their initial orientation due to active rotational
motion, and the MSD becomes linear with time, characterized by a
plateau in Fig. 2A, with an active translational diffusion coefficient
D, that increases with increasing 7. The filament orientational
autocorrelation functions decay exponentially with an active decay
time Tg, which also depends on n,,. The active rotation time 1y is
shown in Fig. 2B both as a function of 7, and F . For small 7y,
increasing the number of motors first leads to a faster rotational
motion, butat iy, ~ 1.5, the motion becomes slower again because
the number of antiparallel motors per filament n? saturates (see fig.
S4); instead, the excess motors increase the cross-linking density
inside the polar domains, which reduces the filament velocity. The
active rotation time 1y decreases with increasing F . (or equivalently
n%P) with a power law, g o F,2 The active diffusion coefficient,
parallel velocity, and rotational correlation times for many different
parameter variations are related by Dy o< vﬁ TR (see Fig. 2C), con-
sistent with the theory of active Brownian motion (34). This implies
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Fig. 2. Single-filament motion and active diffusion for various propulsion forces. (A) Filament MSD divided by the lag time for different motor concentrations .
The lag time 7 is normalized with the passive single-filament rotation time 13, and the MSD with the filament length L2. The parameters are (.2, [)=(0.66, 3.4, 20).
(B) Normalized active rotation times 5 as function of A, and F ;.. Solid lines are a guide to the eye, parameters as in Fig. 1F with (6,L) = (0.66, 20). (C) Normalized active diffu-
sion constants obtained from MSD curves as a function of the filament measured vﬁ TR, parameters as in Fig. 1F with (¢, L) = (0.66, 20).
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Fig. 3. Onset of domain formation: Euler-like buckling instability of polar bands.
(A to C) Snapshots of the time evolution of an initially nematic system with
(¢,EP,L~): (0.66,10,40), for l‘/roR = 0.1,0.2,0.3, respectively. (D) Wavelength of the
instability of polar-sorted bands as a function for varying persistence length and
(0,L, )= (0.66,40, 1). (E) Stability phase diagram for various active forces and
persistence lengths with parameters (¢, L) = (0.66, 20). The solid line separates dif-
ferent phases and indicates the stability limit of the banded phase.

Buckling polar bands

The strength of the active force does determine not only the average
filament velocity but also structure, size, and stability of the domains.
Polar bands are stable for weak active forces and large persistence
lengths, whereas they become unstable and buckle at a particular
wavelength A for sufficiently large active forces. The time evolution
of the motor-filament mixture in Fig. 3 (A to C) shows first polarity-
sorted bands and then progressive bending and breaking of bands
(see also movie S3). The wavelength A of the instability displays a
square root dependence on the filament persistence length £, (see
Fig. 3D). The assumption that the active force in all these systems
evolves independent of the persistence length (see fig. S5) suggests an
Euler buckling-type instability with buckling force F, o< E/ A%, where
E o< g, is the (effective) elastic modulus (35). This relation applies
under the assumption that the effective elasticity E is only weakly
affected by the activity. Together with F, ~ niF, this provides the
scaling \* o €,/niP. The investigation of the stability of the system
with simulations at various combinations of 77, and Ep allows us to
determine the phase diagram shown in Fig. 3E. Here, the stability
limit of the polarity-sorted bands increases with increasing per-
sistence length, which nicely agrees with the predicted linear depen-
dence of the buckling force on €,

Dynamics of topological defects

The system of polar filaments and motor proteins shares features
with both active nematics and polar active fluids, although it is clearly
distinguishable from both of them. The high densities favor nematic
ordering for which the polarity is not important, whereas the two-
filament pair interaction mediated by the motors has a pronounced
polar character. The latter leads to local polar order in the domains.
However, the characteristic topological defects that appear in polar
active fluids, +1 or —1 defects (14), are never observed here. Instead,
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the defect structures in the dynamic disordered phase are +12 and
-1/ topological defects, as shown in Fig. 4, which are characteristic
for active nematics. Therefore, the polar character of the filament
interaction seems only of secondary importance. A defect pair is
formed when a polar band buckles by extensional forces, such that
the convex side forms a +1/2 defect, while the concave side forms a
-1/» defect (see Fig. 4A). These are not the standard defects of active
nematics, because the three domains that meet at a -1/ defect dis-
play polar order, which implies that there can be active forces where
domains with antiparallel polar order meet. In particular, our polar
filament model gives rise to two types of -1/2 defects with different
orientations of the polar domains around the defect core. One has
C, symmetry, and the other has C; symmetry (see Fig. 4, B and C).
Note that for the C; defect in Fig. 4B, there are additional (unmarked)
boundaries between antiparallel domains in the lower left and right
corners where the motion is originated.

The topological defects show superdiffusive motion of the +12
defects and subdiffusive motion of the -1/ defects, as follows from
the defects MSDs in Fig. 4D and illustrated in movie S4. The anni-
hilation of two defects is shown in movie S5. However, we do not
find any differences in the dynamic behavior of the two types of -1/
defects. The defect density depends linearly on the activity, which is
reflected by the inverse square root dependence of the distance lgef
between defects on the force, as shown in Fig. 4E. A similar scaling
is found for other related length scales in the system. The exponential
decay of the parallel and perpendicular spatial orientational cor-
relation functions ﬁ”(r) and Q 1(1) (see fig. S10) provides the cor-
relation lengths /, and I, which are estimations for width and length
of the domains. Last, v|tg is proportional to the distance that a
filament moves along the domain boundary, before changing direc-
tion. The activity dependence of these three lengths is shown in
Fig. 4F and follows the same scaling as l4.s. Note that both tg and
v) are averaged values over a distribution of faster (antiparallel)
and slower (parallel) filaments. Although these three lengths pro-
vide different quantitative estimations of the domain size, their
scaling is consistent with an inverse square root dependence on
the activity.

From dilute to dense filament systems

In passive lyotropic liquid-crystalline systems, particle density and
shape determine both structural and dynamical properties. The
isotropic-nematic (IN) transition in a system of hard rods with aspect
ratio L/c = 20 at ¢ = 0.2 (36) is a lower bound for the IN transition
for our semiflexible filaments. To investigate the effect of filament
density, we show in Fig. 5 (A to D) the simulation snapshots for
various filament densities, below and above the IN transition in the
passive systems, and different 7 ,,, chosen such that nf/nis compa-
rable so that the systems have similar active force densities. We
observe a gradual change from small local bundles held together by
motors at low densities to a dense disordered nematic dominated by
excluded-volume interactions similarly as in experiments (12).
Although the structures observed strongly depend on ¢, the (parallel)
velocities still show a unique linear scaling with the force density
v o< Pe oc F 1ct (see Fig. 5E). However, the active rotation times
shown in Fig. 5F strongly depend on the density, especially for
small densities and low activities, where the rotation time in the
active systems is similar to the passive case. Nevertheless, for large
activities and large densities ¢ > 0.2, again, a unique scaling behav-
ior tg ~ F 7 emerges (see also Fig. 2B). In this regime, also the
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Fig. 4. Densities and MSDs of topological +1/2 and —1/2 defects. (A) Snapshot of a pair of -V/2 (green) and +V2 (magenta) defects. (B) Polar and nematic order near a
-V/2 defect with C; symmetry. (C) Polar and nematic order near a -1/2 defect with C; symmetry. In (A) to (C), filament colors indicate the polar angle of filament orientation.
In (B) and (C), the yellow lines indicate boundaries between polar domains. (D) MSD of the filament center-of-mass (red), -2 defect (green), and +V/2 defect (magenta).
(E) Average distance between defects as a function of the active force. (F) Estimation of the domain size with three different approaches. Solid lines show the 1/\/§depen—
dence and symbols simulations with datasets from the table in Fig. 1 with (¢, L) = (0.66, 20).

active diffusion coefficient D,i; ~ vﬁ 7r and domain size v|Tr show
a universal scaling (see Fig. 5G). The chosen scaling variables (F
TR/ ‘COR, and v|L/Dy) are independent of the filament length, as indi-
cated by three simulations for filaments twice as long as all other
simulations.

Last, we study the effect of activity and concentration on the
effective filament stiffness or effective persistence length €. This ef-
fective persistence length is calculated by an exponential fit of the
tangent correlation function (see fig. S11D) in the motor-filament
mixture at filament concentration ¢ and motor concentration #,.
For passive systems, excluded volume interactions imply that E;, in-
creases with volume fraction ¢. We find that for large enough activity,
{’,; decreases like 1/ \/ﬁ for all filament concentrations (see fig. S11E).

A simple argument for this behavior can be extracted from the
properties of single tangentially driven self-propelled filaments (37).
Under the assumption that filament motion is predominantly along
their contour (“railway motion”), the rotational diffusion Dy of the
end-to-end tangent vector (the change of the contour) can be calcu-
lated explicitly and only depends on the active velocity and the per-
sistence length, Dr = v/ E;. If the rotational diffusion constant is
replaced by ', one obtains ¢, = VTR < 1/ VF, which is exactly
what is found in fig. S11E. We note that for our systems with ¢ > 0.22,
this scaling is identical to the one of vjtr with the active force (see
fig. S11).

Vliegenthart et al., Sci. Adv. 2020; 6 : eaaw9975 22 July 2020

DISCUSSION
Our microscopic model of active gels—based on semiflexible polar
filaments cross-linked by molecular motors—shows that for large
enough motor concentration, an initially nematic arrangement of
filaments is unstable and evolves via polarity sorting, band formation,
and buckling into a stationary but highly dynamic polar-domain
structure with persistent defect formation and annihilation. We find
universal scaling of the domain sizes with the active force determined
by the number of antiparallel motors and their extension. The pre-
dictions of our model are in good qualitative agreement with recent ex-
periments. While polarity has received little attention for a long time,
a recent in vitro experiment provides evidence for the existence of
polar bands (38). Furthermore, the instability of the polar bands in
our model is characterized by a unique length scale, in agreement
with recent in vitro observations (39). In the disordered phase with
polar domains, filaments display a short-time active ballistic motion
followed by active diffusion at later times with a diffusion constant
that increases with activity, in agreement with results of a model of
growing and breaking filaments (9). For polar bands, similar active
ballistic motion has been found in simulations of stiff rods (28).
Although polarity is important in driving the filament dynamics,
the formation of +1/> defects has been found, as in active gel theory,
demonstrating that nematic order dominates the development of
steady-state structures. The dynamics of -1/ defects is found to be
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Fig. 5. Filament density-dependent structure formation and single-filament dynamics. (A to D) Snapshots for systems at various densities, ¢ = (0.15, 0.29, 0.44, 0.66),
where ny, is varied to result in similar n’/n¢ ~ 0.165. (E to G) Dimensionless observables as a function of the active force for different area fractions. Symbols correspond
to simulation data, dashed lines are used to guide the eye, and full lines indicate limiting power laws at large densities: (E) Peclet number, (F) active rotation time, (G) active
diffusion coefficient vﬁ TR (open squares), and domain size vt (solid up-triangles). Colored labels in (E) refer to densities in (E) to (G). Black symbols in (G) correspond to

simulations with longer filaments with (¢,fp,f) =(40,0.66,1.7).

subdiffusive, of +1/2 defects superdiffusive, in agreement with active
nematic theory (15). The individual motion of +12 defects in the
direction of their head shows that the forces are on average exten-
sile. Filament flexibility is a relevant property of active gels (13) be-
cause it modifies the ratio of bend and splay elastic moduli of the
nematic phase and thereby determines the filament structure in the
vicinity of the defects (26). We have shown that it also has a pro-
nounced effect on the instability, domain size, and defect density. In
addition, the effective filament persistence length is found to decrease
with increasing activity, in agreement with experiments (13) and
simulations (26).

Our model can readily be extended to three-dimensional systems,
to study mixtures of stiff and (semi)flexible filaments, as well as of
models with an increased level of complexity like the inclusion of
passive cross-linkers or hydrodynamic interactions. Because of the
simplicity of the underlying mechanisms, we hope that our results
can also help in the design of novel engineered active biomimetic
materials. The Supplementary Material accompanies this paper at
www.scienceadvances.org/.

MATERIALS AND METHODS

Suspensions of n¢ semiflexible filaments and n,,, motors are studied
using Langevin dynamics (40) in two dimensions with periodic bound-
ary conditions. Semiflexible filaments of length contour L are modeled
as discrete chains of ns beads of mass m with position vectors rg, where

Vliegenthart et al., Sci. Adv. 2020; 6 : eaaw9975 22 July 2020

g=1{1....ng and i = {1. ...ng}. The n, beads define n; — 1 segments of
length ay = L/(n; — 1) with unit tangent vectors f; = (it =)/ et -
rq| . The beads are connected by harmonic bonds with equilibrium
length aq and,spr,irllg constant krg/kg T = 250. A bending potential
Vi = k(1 - flq . f; )/a gives rise to a tangent vector correlation func-
tion (t(0) - t(s)) = exp [ — s/€p] = exp [ - (d — 1)kpTs/2x] with dimen-
sionality d and arc length s along the contour, such that the bare
persistence length is €,/L = 2x/LkT (41). Nonbonded inter- and
intramolecular excluded volume and attractive interactions are
described by a Lennard-Jones potential Vij = e[(c/n)'? - 2(c/n)"),
where r denotes the inter- or intramolecular bead-bead separation,
€ denotes the interaction strength, ¢ denotes the interaction diameter
(i.e., the beads are not overlapping) and r. = 36 denotes the poten-
tial cutoff radius. In all our simulations, kgT/e = 10, i.e., attractions
between filaments are negligible. These parameters lead to an effec-
tive Barker-Henderson diameter (42), which is 14% less than that for
a system with a purely repulsive Weeks-Chandler-Andersen (WCA)
potential at €/kgT = 1.0 and 4% less than the WCA potential with
e/kgT = 0.1. The filament beads also act as binding sites for molecular
motors. These are modeled as harmonic springs Vi, = ky(r — r0)2/2
with spring constant k, and equilibrium length r, = o that walk on
the filaments (16, 27, 29, 30). Note that here, the discretization length
ag directly sets the motor step size. When the separation between
two empty sites on nearby filaments is smaller than ryy, a free
(unbound) motor can bind at a rate (p,y/6t) (n;/ nm), where nfn is
the number of free motors and p, = 1 in all simulations. When
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bound, the nf, motors walk in the direction of filament polarity
(from segment 1 — n,) in discrete steps of size ap at a rate I' =
po/At exp (—BAE). Here, pl) is the probability for an attempted step
of a motor attached to two filaments, At is the motor time step, and
AE is the energy difference before and after the motor has stepped.
Motors detach when one leg reaches the end of the filament, when
the motor is stretched beyond a length rof = 3.25 rg, or when a
motor encounters an occupied site on a filament. After detaching,
the free motors form a bath with homogeneous concentration nf,/
LEOX, where Ly is the box size. Different choices can be made for
different events that lead to motor-filament dissociation. What mat-
ters for the filament dynamics is the total number of parallel and
antiparallel motors on the filaments.
The Langevin equation of motion for each bead i on filament g

2.
- d’ry
dr*
is integrated with a time step 8t using the integrator proposed in (40).
To satisfy the fluctuation-dissipation theorem, the random forces are
Gaussian distributed with mean zero and variance 2kgTyd(t — t).
The integration time step 8t and friction y were chosen such that
8t/m =0.005 and ydt/m = 0.005. For these parameters, the (passive)
center-of-mass motion of a single filament is diffusive for center-of-
mass displacements larger than a fraction of the length of a filament,
i.e., for center-of-mass diffusion, the dynamics is essentially over-
damped. Note that the simulation time increases linearly with the
friction constant. Simulations typically contain 900 filaments of
21 beads and up to 3200 motors.

The coupling of filaments by molecular motors leads to sliding
and binding forces that depend on the relative orientation of the
filaments (see Fig. 1, A and B), where antiparallel motors (coupling
two antiparallel filaments) exert larger forces than parallel motors
(coupling two parallel filaments). Moreover, the activity induced by
dimeric motors (one motor arm is grafted) tetrameric motors (both
motor arms move simultaneously) is larger (30). The motor model
here is a hybrid of the two, and both motor arms can move with
equal probability but only one at a time.

Rotational diffusion is measured through the filament orientation
correlation function, where the orientation is defined as the eigen-
vector corresponding to the largest eigenvalue of the moment of
inertia tensor. Defects are traced using the method outlined in (25).

drfz
@

= F +R} )

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/30/eaaw9975/DC1

View/request a protocol for this paper from Bio-protocol.
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