000875444 001__ 875444
000875444 005__ 20240610121124.0
000875444 0247_ $$2doi$$a10.7554/eLife.56500
000875444 0247_ $$2Handle$$a2128/25308
000875444 0247_ $$2altmetric$$aaltmetric:82274185
000875444 0247_ $$2pmid$$apmid:32420874
000875444 0247_ $$2WOS$$aWOS:000538460900001
000875444 037__ $$aFZJ-2020-02039
000875444 082__ $$a600
000875444 1001_ $$0P:(DE-Juel1)168547$$aHillringhaus, Sebastian$$b0
000875444 245__ $$aStochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion
000875444 260__ $$aCambridge$$beLife Sciences Publications$$c2020
000875444 3367_ $$2DRIVER$$aarticle
000875444 3367_ $$2DataCite$$aOutput Types/Journal article
000875444 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600424307_21844
000875444 3367_ $$2BibTeX$$aARTICLE
000875444 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875444 3367_ $$00$$2EndNote$$aJournal Article
000875444 520__ $$aMalaria parasites invade healthy red blood cells (RBCs) during the blood stage of the disease. Even though parasites initially adhere to RBCs with a random orientation, they need to align their apex toward the membrane in order to start the invasion process. Using hydrodynamic simulations of a RBC and parasite, where both interact through discrete stochastic bonds, we show that parasite alignment is governed by the combination of RBC membrane deformability and dynamics of adhesion bonds. The stochastic nature of bond-based interactions facilitates a diffusive-like re-orientation of the parasite at the RBC membrane, while RBC deformation aids in the establishment of apex-membrane contact through partial parasite wrapping by the membrane. This bond-based model for parasite adhesion quantitatively captures alignment times measured experimentally and demonstrates that alignment times increase drastically with increasing rigidity of the RBC membrane. Our results suggest that the alignment process is mediated simply by passive parasite adhesion.
000875444 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000875444 536__ $$0G:(DE-Juel1)jiff44_20180501$$aFormation of Polymer-Particle Aggregates in Blood Flow (jiff44_20180501)$$cjiff44_20180501$$fFormation of Polymer-Particle Aggregates in Blood Flow$$x1
000875444 588__ $$aDataset connected to CrossRef
000875444 7001_ $$0P:(DE-Juel1)176819$$aDasanna, Anil K$$b1
000875444 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000875444 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A$$b3$$eCorresponding author
000875444 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.56500$$gVol. 9, p. e56500$$pe56500$$teLife$$v9$$x2050-084X$$y2020
000875444 8564_ $$uhttps://juser.fz-juelich.de/record/875444/files/eLife_invoice_P004347.pdf
000875444 8564_ $$uhttps://juser.fz-juelich.de/record/875444/files/eLife_invoice_P004347.pdf?subformat=pdfa$$xpdfa
000875444 8564_ $$uhttps://juser.fz-juelich.de/record/875444/files/elife-56500-v2.pdf$$yOpenAccess
000875444 8564_ $$uhttps://juser.fz-juelich.de/record/875444/files/elife-56500-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875444 8767_ $$8P004347$$92020-05-19$$d2020-05-20$$eAPC$$jZahlung erfolgt$$p56500$$zUSD 2500,- Belegnr. 1200153402
000875444 909CO $$ooai:juser.fz-juelich.de:875444$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000875444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168547$$aForschungszentrum Jülich$$b0$$kFZJ
000875444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176819$$aForschungszentrum Jülich$$b1$$kFZJ
000875444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000875444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
000875444 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000875444 9141_ $$y2020
000875444 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875444 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000875444 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875444 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000875444 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000875444 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2017
000875444 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000875444 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000875444 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875444 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875444 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875444 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000875444 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2017
000875444 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000875444 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875444 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000875444 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875444 920__ $$lyes
000875444 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000875444 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000875444 9801_ $$aAPC
000875444 9801_ $$aFullTexts
000875444 980__ $$ajournal
000875444 980__ $$aVDB
000875444 980__ $$aI:(DE-Juel1)IBI-5-20200312
000875444 980__ $$aI:(DE-82)080012_20140620
000875444 980__ $$aAPC
000875444 980__ $$aUNRESTRICTED
000875444 981__ $$aI:(DE-Juel1)IAS-2-20090406