000875448 001__ 875448
000875448 005__ 20240712113242.0
000875448 0247_ $$2doi$$a10.1149/1945-7111/ab8825
000875448 0247_ $$2ISSN$$a0013-4651
000875448 0247_ $$2ISSN$$a0096-4743
000875448 0247_ $$2ISSN$$a0096-4786
000875448 0247_ $$2ISSN$$a1945-6859
000875448 0247_ $$2ISSN$$a1945-7111
000875448 0247_ $$2ISSN$$a2002-2015
000875448 0247_ $$2ISSN$$a2156-7395
000875448 0247_ $$2Handle$$a2128/24949
000875448 0247_ $$2WOS$$aWOS:000527234100001
000875448 037__ $$aFZJ-2020-02043
000875448 082__ $$a660
000875448 1001_ $$0P:(DE-HGF)0$$aReshetenko, Tatyana$$b0
000875448 245__ $$aThe Effect of Proton Conductivity of Fe–N–C–Based Cathode on PEM Fuel cell Performance
000875448 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2020
000875448 3367_ $$2DRIVER$$aarticle
000875448 3367_ $$2DataCite$$aOutput Types/Journal article
000875448 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591116293_5362
000875448 3367_ $$2BibTeX$$aARTICLE
000875448 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000875448 3367_ $$00$$2EndNote$$aJournal Article
000875448 520__ $$aA model–based impedance spectroscopy is used to determine proton conductivity, oxygen transport parameter, double layer capacitance and oxygen reduction reaction (ORR) Tafel slope in the Fe–N–C cathode catalyst layer (CCL) of a PEM fuel cell. Experimental spectra of two cells differing by the membrane thickness only are processed using a physics–based model for PEMFC impedance. The spectra have been measured in the range of current densities from 25 to 800 mA cm−2. The ORR Tafel slope of both the cells shows almost linear growth with the current density. In one of the cells, the CCL proton conductivity σ p strongly decays at the current density of 100 mA cm−2; this decay is accompanied by the step growth of the double layer capacitance. Other minor variations of proton conductivity and double layer capacitance with the cell current occur also in a counterphase; presumed origin of this effect is discussed. The oxygen diffusion coefficient in the cathode exhibits explosive growth with the cell current. We attribute this effect to formation of temperature and pressure gradients in the CCL due to strongly non–uniform distribution of ORR rate in the electrode
000875448 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000875448 588__ $$aDataset connected to CrossRef
000875448 7001_ $$0P:(DE-HGF)0$$aRandolf, Günter$$b1
000875448 7001_ $$0P:(DE-HGF)0$$aOdgaard, Madeleine$$b2
000875448 7001_ $$0P:(DE-HGF)0$$aZulevi, Barr$$b3
000875448 7001_ $$0P:(DE-HGF)0$$aSerov, Alexey$$b4
000875448 7001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b5$$eCorresponding author
000875448 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ab8825$$gVol. 167, no. 8, p. 084501 -$$n8$$p084501 -$$tJournal of the Electrochemical Society$$v167$$x1945-7111$$y2020
000875448 8564_ $$uhttps://juser.fz-juelich.de/record/875448/files/JES_2020_Fe_N_C_impedance.pdf$$yOpenAccess
000875448 8564_ $$uhttps://juser.fz-juelich.de/record/875448/files/JES_2020_Fe_N_C_impedance.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000875448 909CO $$ooai:juser.fz-juelich.de:875448$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000875448 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b5$$kFZJ
000875448 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000875448 9141_ $$y2020
000875448 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000875448 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000875448 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000875448 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2017
000875448 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000875448 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000875448 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000875448 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000875448 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000875448 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000875448 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000875448 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000875448 920__ $$lyes
000875448 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000875448 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000875448 9801_ $$aFullTexts
000875448 980__ $$ajournal
000875448 980__ $$aVDB
000875448 980__ $$aUNRESTRICTED
000875448 980__ $$aI:(DE-Juel1)IEK-14-20191129
000875448 980__ $$aI:(DE-Juel1)IEK-3-20101013
000875448 981__ $$aI:(DE-Juel1)IET-4-20191129
000875448 981__ $$aI:(DE-Juel1)ICE-2-20101013
000875448 981__ $$aI:(DE-Juel1)IET-4-20191129