000877229 001__ 877229
000877229 005__ 20210130004936.0
000877229 0247_ $$2doi$$a10.1088/1361-6528/ab898a
000877229 0247_ $$2ISSN$$a0957-4484
000877229 0247_ $$2ISSN$$a1361-6528
000877229 0247_ $$2Handle$$a2128/24945
000877229 0247_ $$2pmid$$apmid:32294631
000877229 0247_ $$2WOS$$aWOS:000536929600001
000877229 0247_ $$2altmetric$$aaltmetric:63954090
000877229 037__ $$aFZJ-2020-02056
000877229 041__ $$aEnglish
000877229 082__ $$a530
000877229 1001_ $$0P:(DE-Juel1)172619$$aKölzer, Jonas$$b0
000877229 245__ $$aPhase-coherent loops in selectively-grown topological insulator nanoribbons
000877229 260__ $$aBristol$$bIOP Publ.$$c2020
000877229 3367_ $$2DRIVER$$aarticle
000877229 3367_ $$2DataCite$$aOutput Types/Journal article
000877229 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591108558_5362
000877229 3367_ $$2BibTeX$$aARTICLE
000877229 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877229 3367_ $$00$$2EndNote$$aJournal Article
000877229 520__ $$aWe succeeded in the fabrication of topological insulator (Bi0.57Sb0.43)2Te3 Hall bars as well as nanoribbons by means of selective-area growth using molecular beam epitaxy. By performing magnetotransport measurements at low temperatures information on the phase-coherence of the electrons is gained by analyzing the weak-antilocalization effect. Furthermore, from measurements on nanoribbons at different magnetic field tilt angles an angular dependence of the phase-coherence length is extracted, which is attributed to transport anisotropy and geometrical factors. For the nanoribbon structures universal conductance fluctuations were observed. By performing a Fourier transform of the fluctuation pattern a series of distinct phase-coherent closed-loop trajectories are identified. The corresponding enclosed areas can be explained in terms of nanoribbon dimensions and phase-coherence length. In addition, from measurements at different magnetic field tilt angles we can deduce that the area enclosed by the loops are predominately oriented parallel to the quintuple layers.
000877229 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000877229 588__ $$aDataset connected to CrossRef
000877229 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000877229 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000877229 7001_ $$0P:(DE-Juel1)167347$$aRosenbach, Daniel$$b1
000877229 7001_ $$0P:(DE-HGF)0$$aWeyrich, Christian$$b2
000877229 7001_ $$0P:(DE-Juel1)171406$$aSchmitt, Tobias W$$b3
000877229 7001_ $$0P:(DE-Juel1)171405$$aSchleenvoigt, Michael$$b4
000877229 7001_ $$0P:(DE-Juel1)171826$$aJalil, Abdur Rehman$$b5
000877229 7001_ $$0P:(DE-Juel1)165984$$aSchüffelgen, Peter$$b6
000877229 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b7
000877229 7001_ $$0P:(DE-HGF)0$$aSacksteder IV, Vincent E$$b8
000877229 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b9
000877229 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b10
000877229 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b11$$eCorresponding author
000877229 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/ab898a$$gVol. 31, no. 32, p. 325001 -$$n32$$p325001 -$$tNanotechnology$$v31$$x1361-6528$$y2020
000877229 8564_ $$uhttps://juser.fz-juelich.de/record/877229/files/K%C3%B6lzer_2020_Nanotechnology_31_325001.pdf$$yOpenAccess
000877229 8564_ $$uhttps://juser.fz-juelich.de/record/877229/files/K%C3%B6lzer_2020_Nanotechnology_31_325001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877229 909CO $$ooai:juser.fz-juelich.de:877229$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172619$$aForschungszentrum Jülich$$b0$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167347$$aForschungszentrum Jülich$$b1$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171406$$aForschungszentrum Jülich$$b3$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171405$$aForschungszentrum Jülich$$b4$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171826$$aForschungszentrum Jülich$$b5$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165984$$aForschungszentrum Jülich$$b6$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b7$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b9$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich$$b10$$kFZJ
000877229 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich$$b11$$kFZJ
000877229 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000877229 9141_ $$y2020
000877229 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-12
000877229 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877229 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2018$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877229 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-12$$wger
000877229 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000877229 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000877229 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000877229 920__ $$lyes
000877229 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877229 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877229 980__ $$ajournal
000877229 980__ $$aVDB
000877229 980__ $$aUNRESTRICTED
000877229 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877229 980__ $$aI:(DE-82)080009_20140620
000877229 9801_ $$aFullTexts