Hauptseite > Publikationsdatenbank > Phase-coherent loops in selectively-grown topological insulator nanoribbons > print |
001 | 877229 | ||
005 | 20210130004936.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/ab898a |2 doi |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 2128/24945 |2 Handle |
024 | 7 | _ | |a pmid:32294631 |2 pmid |
024 | 7 | _ | |a WOS:000536929600001 |2 WOS |
024 | 7 | _ | |a altmetric:63954090 |2 altmetric |
037 | _ | _ | |a FZJ-2020-02056 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Kölzer, Jonas |0 P:(DE-Juel1)172619 |b 0 |
245 | _ | _ | |a Phase-coherent loops in selectively-grown topological insulator nanoribbons |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1591108558_5362 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We succeeded in the fabrication of topological insulator (Bi0.57Sb0.43)2Te3 Hall bars as well as nanoribbons by means of selective-area growth using molecular beam epitaxy. By performing magnetotransport measurements at low temperatures information on the phase-coherence of the electrons is gained by analyzing the weak-antilocalization effect. Furthermore, from measurements on nanoribbons at different magnetic field tilt angles an angular dependence of the phase-coherence length is extracted, which is attributed to transport anisotropy and geometrical factors. For the nanoribbon structures universal conductance fluctuations were observed. By performing a Fourier transform of the fluctuation pattern a series of distinct phase-coherent closed-loop trajectories are identified. The corresponding enclosed areas can be explained in terms of nanoribbon dimensions and phase-coherence length. In addition, from measurements at different magnetic field tilt angles we can deduce that the area enclosed by the loops are predominately oriented parallel to the quintuple layers. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Condensed Matter Physics |0 V:(DE-MLZ)SciArea-120 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Information and Communication |0 V:(DE-MLZ)GC-120-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Rosenbach, Daniel |0 P:(DE-Juel1)167347 |b 1 |
700 | 1 | _ | |a Weyrich, Christian |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Schmitt, Tobias W |0 P:(DE-Juel1)171406 |b 3 |
700 | 1 | _ | |a Schleenvoigt, Michael |0 P:(DE-Juel1)171405 |b 4 |
700 | 1 | _ | |a Jalil, Abdur Rehman |0 P:(DE-Juel1)171826 |b 5 |
700 | 1 | _ | |a Schüffelgen, Peter |0 P:(DE-Juel1)165984 |b 6 |
700 | 1 | _ | |a Mussler, Gregor |0 P:(DE-Juel1)128617 |b 7 |
700 | 1 | _ | |a Sacksteder IV, Vincent E |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 9 |
700 | 1 | _ | |a Lüth, Hans |0 P:(DE-Juel1)128608 |b 10 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 11 |e Corresponding author |
773 | _ | _ | |a 10.1088/1361-6528/ab898a |g Vol. 31, no. 32, p. 325001 - |0 PERI:(DE-600)1362365-5 |n 32 |p 325001 - |t Nanotechnology |v 31 |y 2020 |x 1361-6528 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/877229/files/K%C3%B6lzer_2020_Nanotechnology_31_325001.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/877229/files/K%C3%B6lzer_2020_Nanotechnology_31_325001.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:877229 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172619 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167347 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)171406 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)171405 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)171826 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)165984 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128617 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)128608 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)128634 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-12 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOLOGY : 2018 |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-12 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-12 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-12 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-12 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-12 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|