000877231 001__ 877231
000877231 005__ 20220930130240.0
000877231 0247_ $$2doi$$a10.1016/j.nicl.2020.102287
000877231 0247_ $$2Handle$$a2128/25128
000877231 0247_ $$2altmetric$$aaltmetric:83329626
000877231 0247_ $$2pmid$$apmid:32540630
000877231 0247_ $$2WOS$$aWOS:000561851100004
000877231 037__ $$aFZJ-2020-02058
000877231 082__ $$a610
000877231 1001_ $$0P:(DE-Juel1)173675$$aKocher, Martin$$b0$$eCorresponding author$$ufzj
000877231 245__ $$aRole of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment
000877231 260__ $$a[Amsterdam u.a.]$$bElsevier$$c2020
000877231 3367_ $$2DRIVER$$aarticle
000877231 3367_ $$2DataCite$$aOutput Types/Journal article
000877231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594731013_25174
000877231 3367_ $$2BibTeX$$aARTICLE
000877231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877231 3367_ $$00$$2EndNote$$aJournal Article
000877231 520__ $$aProgressive cognitive decline following multimodal neurooncological treatment is a common observation in patients suffering from malignant glioma. Alterations of the default-mode network (DMN) represent a possible source of impaired neurocognitive functioning and were analyzed in these patients.Eighty patients (median age, 51 years) with glioma (WHO grade IV glioblastoma, n=57; WHO grade III anaplastic astrocytoma, n=13; WHO grade III anaplastic oligodendroglioma, n=10) and ECOG performance score 0-1 underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing at a median interval of 13 months (range, 1-114 months) after initiation of therapy. For evaluation of structural and metabolic changes after treatment, anatomical MRI and amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) were simultaneously acquired to rs-fMRI on a hybrid MR/PET scanner. A cohort of 80 healthy subjects matched for gender, age, and educational status served as controls.The connectivity pattern within the DMN (12 nodes) of the glioma patients differed significantly from that of the healthy subjects but did not depend on age, tumor grade, time since treatment initiation, presence of residual/recurrent tumor, number of chemotherapy cycles received, or anticonvulsive medication. Small changes in the connectivity pattern were observed in patients who had more than one series of radiotherapy. In contrast, structural tissue changes located at or near the tumor site (including resection cavities, white matter lesions, edema, and tumor tissue) had a strong negative impact on the functional connectivity of the adjacent DMN nodes, resulting in a marked dependence of the connectivity pattern on tumor location. In the majority of neurocognitive domains, glioma patients performed significantly worse than healthy subjects. Correlation analysis revealed that reduced connectivity in the left temporal and parietal DMN nodes was associated with low performance in language processing and verbal working memory. Furthermore, connectivity of the left parietal DMN node also correlated with processing speed, executive function, and verbal as well as visual working memory. Overall DMN connectivity loss and cognitive decline were less pronounced in patients with higher education.Personalized treatment strategies for malignant glioma patients should consider the left parietal and temporal DMN nodes as vulnerable regions concerning neurocognitive outcome.
000877231 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000877231 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000877231 588__ $$aDataset connected to CrossRef
000877231 7001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b1$$ufzj
000877231 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b2$$ufzj
000877231 7001_ $$0P:(DE-Juel1)169295$$aSchreiber, Jan$$b3$$ufzj
000877231 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b4$$ufzj
000877231 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b5$$ufzj
000877231 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b6$$ufzj
000877231 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b7$$ufzj
000877231 7001_ $$0P:(DE-Juel1)171739$$aTscherpel, Caroline$$b8
000877231 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I.$$b9
000877231 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b10$$ufzj
000877231 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b11$$ufzj
000877231 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b12$$ufzj
000877231 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b13$$ufzj
000877231 773__ $$0PERI:(DE-600)2701571-3$$a10.1016/j.nicl.2020.102287$$gp. 102287 -$$p102287 -$$tNeuroImage: Clinical$$v27$$x2213-1582$$y2020
000877231 8564_ $$uhttps://juser.fz-juelich.de/record/877231/files/Invoice_OAD0000048066.pdf
000877231 8564_ $$uhttps://juser.fz-juelich.de/record/877231/files/Invoice_OAD0000048066.pdf?subformat=pdfa$$xpdfa
000877231 8564_ $$uhttps://juser.fz-juelich.de/record/877231/files/Kocher_2020_NeuroImage%20Clinical_Role%20of%20the%20default%20mode%20resting-state%20network%20for%20cognitive%20functioning%20in%20malignant%20glioma%20patients%20following%20multimodal%20treatment.pdf$$yOpenAccess
000877231 8564_ $$uhttps://juser.fz-juelich.de/record/877231/files/Kocher_2020_NeuroImage%20Clinical_Role%20of%20the%20default%20mode%20resting-state%20network%20for%20cognitive%20functioning%20in%20malignant%20glioma%20patients%20following%20multimodal%20treatment.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877231 8767_ $$8OAD0000048066$$92020-05-25$$d2020-05-29$$eAPC$$jZahlung erfolgt$$p102287$$zBelegnr. 1200153580
000877231 909CO $$ooai:juser.fz-juelich.de:877231$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173675$$aForschungszentrum Jülich$$b0$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b1$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b2$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169295$$aForschungszentrum Jülich$$b3$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b4$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b5$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b6$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b7$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171739$$aForschungszentrum Jülich$$b8$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b11$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b12$$kFZJ
000877231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b13$$kFZJ
000877231 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000877231 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000877231 9141_ $$y2020
000877231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000877231 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE-CLIN : 2018$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877231 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-12
000877231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000877231 920__ $$lyes
000877231 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000877231 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x1
000877231 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x2
000877231 980__ $$ajournal
000877231 980__ $$aVDB
000877231 980__ $$aI:(DE-Juel1)INM-4-20090406
000877231 980__ $$aI:(DE-Juel1)INM-1-20090406
000877231 980__ $$aI:(DE-Juel1)INM-3-20090406
000877231 980__ $$aAPC
000877231 980__ $$aUNRESTRICTED
000877231 9801_ $$aAPC
000877231 9801_ $$aFullTexts