000877237 001__ 877237
000877237 005__ 20210130004938.0
000877237 0247_ $$2doi$$a10.1016/j.neuroimage.2020.116972
000877237 0247_ $$2Handle$$a2128/26170
000877237 0247_ $$2altmetric$$aaltmetric:82693897
000877237 0247_ $$2pmid$$apmid:32454206
000877237 0247_ $$2WOS$$aWOS:000555460300011
000877237 037__ $$aFZJ-2020-02064
000877237 082__ $$a610
000877237 1001_ $$0P:(DE-Juel1)171719$$aKharabian, Shahrzad$$b0$$eCorresponding author$$ufzj
000877237 245__ $$aCharacterizing the gradients of structural covariance in the human hippocampus
000877237 260__ $$aOrlando, Fla.$$bAcademic Press$$c2020
000877237 3367_ $$2DRIVER$$aarticle
000877237 3367_ $$2DataCite$$aOutput Types/Journal article
000877237 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605534831_2430
000877237 3367_ $$2BibTeX$$aARTICLE
000877237 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877237 3367_ $$00$$2EndNote$$aJournal Article
000877237 520__ $$aThe hippocampus is a plastic brain structure that has been associated with a range ofbehavioral aspects but also shows vulnerability to the most frequent neurocognitivediseases. Different aspects of its organization have been revealed by studies probingits different neurobiological properties. In particular, histological work has shown apattern of differentiation along the proximal-distal dimension, while studies examiningfunctional properties and large-scale functional integration have primarily highlighted apattern of differentiation along the anterior-posterior dimension. To better understandhow these organizational dimensions underlie the pattern of structural covariance (SC)in the human hippocampus, we here applied a non-linear decomposition approach,disentangling the major modes of variation, to the pattern of grey matter volumecorrelation of hippocampus voxels with the rest of the brain in a sample of 377 healthyyoung adults. We additionally investigated the consistency of the derived gradients inan independent sample of life-span adults and also examined the relationshipsbetween these major modes of variations and the patterns derived from microstructureand functional connectivity mapping. Our results showed that similar major modes ofSC-variability are identified across the two independent datasets. The major dimensionof variation found in SC runs along the hippocampal anterior-posterior axis andfollowed closely the principal dimension of functional differentiation, suggesting aninfluence of network level interaction in this major mode of morphological variability.The second main mode of variability in the SC showed a gradient along the dorsalventralaxis, and was moderately related to variability in hippocampal microstructuralproperties. Thus our results depicting relatively reliable patterns of SC-variability withinthe hippocampus show an interplay between the already known organizationalprinciples on the pattern of variability in hippocampus' macrostructural properties. Thisstudy hence provides a first insight on the underlying organizational forces generatingdifferent co-plastic modes within the human hippocampus that may, in turn, help tobetter understand different vulnerability patterns of this crucial structure in differentneurological and psychiatric diseases.
000877237 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000877237 7001_ $$0P:(DE-Juel1)167223$$aPlachti, Anna$$b1$$ufzj
000877237 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2$$ufzj
000877237 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b3$$ufzj
000877237 7001_ $$0P:(DE-Juel1)161225$$aGENON, Sarah$$b4$$ufzj
000877237 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2020.116972$$p116972$$tNeuroImage$$v218$$x1053-8119$$y2020
000877237 8564_ $$uhttps://juser.fz-juelich.de/record/877237/files/1-s2.0-S1053811920304584-main%20Shahrzad.pdf$$yOpenAccess
000877237 909CO $$ooai:juser.fz-juelich.de:877237$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171719$$aForschungszentrum Jülich$$b0$$kFZJ
000877237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167223$$aForschungszentrum Jülich$$b1$$kFZJ
000877237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000877237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000877237 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b4$$kFZJ
000877237 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000877237 9141_ $$y2020
000877237 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28
000877237 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877237 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2018$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877237 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2018$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000877237 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-28$$wger
000877237 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000877237 920__ $$lyes
000877237 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000877237 980__ $$ajournal
000877237 980__ $$aVDB
000877237 980__ $$aUNRESTRICTED
000877237 980__ $$aI:(DE-Juel1)INM-7-20090406
000877237 9801_ $$aFullTexts