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Abstract

We study colloidal particles with chemically inhomogeneous surfaces suspended in a crit-
ical binary liquid mixture. The inhomogeneous particle surface is composed of patches with
alternating adsorption preferences for the two components of the binary solvent. By de-
scribing the binary liquid mixture at its consolute point in terms of the critical Ising model
we exploit its conformal invariance in two spatial dimension. This allows us to determine
exactly the universal profiles of the order parameter, the energy density, and the stress tensor
as well as some of their correlation functions around a single particle for various shapes and
configurations of the surface patches. The formalism encompasses several interesting con-
figurations, including Janus particles of circular and needle shapes with dipolar symmetry
and a circular particle with quadrupolar symmetry. From these single-particle properties
we construct the so-called small particle operator expansion (SPOE), which enables us to
obtain asymptotically exact expressions for the position- and orientation-dependent critical
Casimir interactions of the particles with distant objects, such as another particle or the
confining walls of a half plane, strip, or wedge, with various boundary conditions for the
order parameter. In several cases we compare the interactions at large distances with the

ones at close distance (but still large on the molecular scale). We also compare our analytical
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results for two Janus particles with recent simulation data.
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1 Introduction

Remarkable progress in colloidal synthesis has allowed one to fabricate particles with anisotropic
shapes and interactions [1, 2, 3]. Using such particles one can generate a large variety of nanos-
tructured materials via self-assembly. Particularly promising for the buildup of complex colloidal
structures are particles with surface patch properties, which act as analogues of molecular va-
lences. Modern technologies are able to produce multivalent patchy particles with geometrically

well-defined patterns, such as dimers (e.g., Janus particles), trimers, or even tetramers [4, 5, 6, 7.



In addition, one can prescribe a specific solvent affinity of the patches by suitable chemical treat-
ments [5, 6, 8, 9]. This specific solvent affinity in combination with binary solvents provides the
way to directed self-assembly controlled by fluid-mediated interactions between the particles or
between the patches of different particles [10]. Recent experimental studies [5, 6, 8, 9] have
demonstrated that the fluid-mediated interactions, which involve the critical Casimir effect,
are particularly useful for manipulating colloids (see also recent reviews [11, 12] and references
therein). This is the case because their range and strength are set by the solvent correlation
length, which can be finely tuned by temperature in a reversible and universal manner. The
critical Casimir forces (CCF's) result from the spatial confinement of the fluctuating composition
of the binary solvent close to its consolute point [13]. Since the properties of CCFs, including
their sign, depend sensitively on the adsorption preferences of a colloid surface [14, 15], one can
generate a selective bonding between particle patches, e.g., among hydrophobic or hydrophilic
patches in aqueous solutions. Non-spherical shapes of particles allow the assembly of more com-
plex structures [5]. Due to the anisotropy of the particles, there is not only a force but also
a critical Casimir torque acting on the particles [16]. This may lead to additional interesting
effects such as orientational ordering.

In order to investigate the assembly behavior of colloids one successfully uses computer
simulations based, in a first step, on effective pair potentials [5, 17, 18, 19]. It is therefore
crucial to have a detailed knowledge of the critical Casimir pair potentials (CCPs) between two
patchy particles. An accurate determination of the CCP is, however, a challenging task. Apart
from a few exceptions and limiting cases, the presently available analytical results for CCFs
and their potentials are of approximate character. These challenges have motivated the present
study.

Here, we investigate the effect of chemical inhomogeneities at the surface of colloidal particles
which are suspended in a binary liquid mixture at its consolute point with the latter belonging
to the Ising universality class. The surfaces of the particles suspended in the binary solvent
generically attract one of the two components of the mixture preferentially. In the corresponding
Ising lattice model this amounts to fix surface spins in the + or — direction. A surface with
no preference corresponds to free-spin boundary conditions [20]. In the terminology of surface
critical phenomena these two surface universality classes [21, 22, 23] are known as “normal” (4
or —) and “ordinary” (O), respectively. We focus on the case that the inhomogeneous particle
surface is composed of patches with alternating preferences + and —. Considering the system
right at the bulk critical point of the solvent — apart from being an important benchmark —
allows one to exploit conformal invariance [24] in order to map conformally the actual particle
geometry to a simpler one. We study a system in two spatial dimensions (d = 2) for which this
is particularly effective due to the abundance of possible conformal mappings!.

We introduce CCF's for the simple case of two macroscopically extended parallel plates with

In more than two dimensions it is only the invariance under inversion which, in addition to the dilatation,
one has at ones disposal. Still, this yields interesting results such as the exact form of the profiles of the order

parameter and of the energy around a single sphere (see Ref. [25]).



uniform boundary conditions a and b, respectively, in d spatial dimensions. In the universal
scaling region close to the critical point of the bulk system, such that their mutual distance
W and the bulk correlation length & are much larger than microscopic lengths, the CCF (per

cross-sectional area and in units of kgT') F,, between the plates is given by [13]
Fup = Ou(W/EW ™1, (1.1)

where ©4(z) is a universal scaling function of the dimensionless ratio W/¢. At the bulk critical
point the scaling function reduces to the universal critical Casimir amplitude Ay, = O4p(z = 0).
Equation (1.1) follows from scaling arguments and renormalization group analyses [26] which,
in general, leave the explicit form of the function O, determined in the form of an e-expansion
[27].

In d = 2, where the two-plate system reduces to a strip, a complete understanding of the
Casimir forces has been achieved. For the Ising strip on the square lattice, the corresponding
scaling function ©,,(W/§) in Eq. (1.1) is known exactly at any temperature and for arbitrary
uniform boundary conditions [28, 29]. Moreover, its asymmetric behavior in terms of the scaling
variable W/¢ has been explained in Ref. [30]. Mirror symmetric boundaries attract each other
(i.e., Oq4q < 0). This is a consequence of reflection positivity [31, 32]. This feature holds not
only for the Ising universality class. Another important feature is that in the scaling regime off
criticality, symmetry-breaking (£) and symmetry-preserving (O) boundary conditions exchange
their role upon swapping the low and high temperature phases, as reported in Refs. [28, 33] for
the Ising model and in Ref. [34] for a wider range of universality classes in two dimensions.

By applying conformal invariance methods [35, 36] the values A, have been calculated
exactly for all combinations (a,b) of the conformally invariant boundary conditions (+, —, O) on
its two edges [24, 37, 38, 39]:

Ay =m[—1,-1,23,2]/48 for ab=[00,++,+—,40]; Ay = Ap,. (1.2)

As mentioned above, conformal invariance in d = 2 allows one to relate the critical behavior
in the presence of inclusions with distinct geometries. This refers not only to the order parameter
and energy density profiles [25] and correlation functions [40], but also to the CCFs between
two immersed objects. As an illustration we consider the CCF between two arbitrarily arranged
(non-crossing) semi-infinite and straight needles [41]. Like the interior of the infinite strip, the
region outside the two needles is simply connected and can be conformally mapped onto the
upper half plane (which can be considered as the simplest representative of the simply connected
confined regions). From the ensuing mapping from the strip to the two-needle system, the
CCFs between the needles can — via a transformation [24] of the stress tensor density — be
determined from those of the strip. From a strip with a = b the force between the two needles
follows if they both have uniform boundary conditions a. If a # b, there are two switches
between a and b, one at each of the two infinitely far ends of the strip, and the mapping can
be designed to put the switches anywhere on the boundaries of the two needles. This allows

one, in particular, to determine the CCF for the case of a homogeneous boundary condition a



on one of the two needles and b on the other. But this holds also for the case in which one
needle has the boundary condition a on one of its two sides and b on the other, while the other
needle has the same condition a (or b) on both of its sides. Likewise, for the situation of an
infinite needle forming the boundary of a half plane in which a semi-infinite needle is embedded,
a corresponding mapping from the strip with a # b allows one to determine the CCF when
there is a “chemical step”, i.e., a switch between a and b, in the half plane boundary while the
semi-infinite needle has the same condition a (or b) on both of its sides.

The case of the upper half plane, with the real axis consisting of an arbitrary number
of successive intervals with arbitrarily distributed lengths on which the boundary condition
alternates between + and —, was analyzed in Ref. [42]. Using the corresponding stress tensor
density [41] one can determine the interactions in a set of two or more inclusions with a simply
connected outside region if the total number of +/— switches in their boundaries is larger than
two. A strip with alternating boundary conditions has been studied in Ref. [43]. If it contains
only + and — segments in its two boundaries, it also belongs to the above type of systems.

An infinite plane containing two particles with at least one of them of finite extent repre-
sents a doubly connected region which can always be mapped conformally to the interior of
an annulus (or, equivalently, to the surface of a finite cylinder). For the case of homogeneous
boundary conditions a and b on the two boundary circles of the annulus — with (a,b) being
any combination of the three aforementioned boundary universality classes — in Ref. [39] the
partition function of the critical system inside the annulus has been calculated for an arbitrary
size ratio of the two circles. From these results one can derive the CCF between two particles,
each with homogeneous boundary conditions, such as two circular particles with arbitrary size-
and distance-to-size ratios [44, 45], between two finite needles on a line [46], between the bound-
aries of a half plane or a strip and an embedded needle in some special configurations [47], and
between two arbitrarily configured needles [41].

However, investigating the critical force and torque acting on a particle with an inhomoge-
neous surface (such as the Janus-type particles shown in Fig. 1), which interacts either with
another such particle or is confined in a half plane, strip, or wedge, would require results for
an annulus with an inhomogeneous boundary condition on at least one of the bounding circles.
These are presently not available and therefore we consider limiting cases.

Our main concern is to investigate the situation in which the size of the particle is much
smaller than its closest distance to other inclusions or boundaries by using the efficient ana-
lytical tool of the “small particle operator expansion” (SPOE). Like in the “operator product
expansion” [48, 49, 50, 35, 36], the large distance effects of a “small” object are encoded in a
series of operators® located at the position of the object which is reminiscent of the multipole
expansion in electrostatics. Like the operator product expansion, the SPOE is not limited to
two dimensions and to the critical point. Up to now it has been established mainly for particles
of spherical [44, 51] and anisotropic [52, 53] shape with a homogeneous boundary. An exception

is the dumb-bell of two touching spheres, one with the + and the other with the — boundary

2In the literature the operators are sometimes addressed as “fields”.
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Figure 1: Circular and rod-like colloids with various patterns of chemical inhomogeneity. A symmetric
Janus particle (a) and its generalized version (b) specified by the angle x. (c) A “double” Janus particle,
corresponding to a quadrupole. (d) A needle-shaped Janus colloid.

(b) (c)

Figure 2: Typical configurations of Janus and quadrupolar particles. (a) A Janus particle facing
a wedge W, with 4+ boundary condition. (b) A Janus particle in a strip Sy, with (a, b) boundary
conditions and width W. (c¢) Two quadrupolar particles in the bulk.

condition [52].

Here, we provide the SPOEs for the particles shown in Fig. 1. For such particles the
operators and their prefactors in the SPOE can be inferred from the profiles and correlation
functions the particle induces when being solitary in the bulk. In this case the outside region is
simply connected and the properties can be obtained by means of a conformal transformation®
from those [55, 56, 42] in the empty half plane with an appropriate inhomogeneous boundary.

As mentioned above the SPOE enables one to obtain asymptotically exact analytical results
for the free energy of interaction between the particle and distant objects. It is interesting to
compare these results with corresponding ones valid for close separations. In this context we
present a discussion of the corresponding Derjaguin approximations. Finally, our analytical

findings are compared with the numerical results for the interaction between Janus particles as

3Like in the operator product expansion, in the vicinity of the critical point there are additional operator
contributions with prefactors which vanish at the critical point and cannot be determined as described. (For the
simple case of a spherical particle with an ordinary surface in the Gaussian model in d > 2 compare Ref. [54].)
However, they are expected to yield only corrections of higher order to the leading distance- and orientation-

dependent behaviors which are still determined by the corresponding operator terms at the critical point.



obtained from Monte Carlo simulations in Ref. [57].

The paper is structured as follows. In Secs. 2.1-2.4 we determine the profiles of the order
parameter, the energy density, and the stress tensor for all the particles shown in Fig.1. For the
generalized circular Janus particle in Fig. 1(b) details of the profiles are presented in Appendix
C. Using this information and the results for two-point correlation functions, as obtained in
Appendices B and D, SPOEs for these particles are derived in Sec. 3. In Sec. 4 it is explained
how to use this operator expansion in order to calculate the critical Casimir free energy of
interaction between a small particle and distant objects. We apply this method in order to
calculate in Secs. 5 and 6 the free energy necessary to transfer Janus and quadrupolar particles
from the bulk into a half plane, a strip (as in Fig. 2 (b)), or a wedge (as in Fig. 2 (a)). In
Sec. 7 we discuss the critical Casimir interaction free energy between two distant Janus or
quadrupolar particles as in Fig. 2 (¢) and between a Janus particle and a needle with ordinary
boundary conditions. In several cases we compare the critical Casimir interactions at large
distances with those at small distance. For the circular particles in Fig.1, in Appendix E we
discuss the validity of the Derjaguin approximation and calculate the first correction to it. In
Appendix F we comment on level two degeneracy in two-dimensional conformal field theories.
A glossary and a list of mathematical symbols used in the paper are provided in Appendix A.

Section 8 provides a summary and conclusions.

2 Profiles induced by a single particle

The four particles P in Figs. 1 [(a), (b), (c), (d)], which we denote by P = [J, J,, Q, Jn] =
[Janus, Janus y, quadrupole, Janus needle], affect the critical system in the complemental, out-
side part of the plane via their boundaries, which are composed of alternating segments with
the surface universality classes + and —. These segments meet at switching points (sp) where
the sign of the surface field flips. Burkhardt, Guim, and Xue [42, 55, 56] have investigated in
detail the corresponding effect in the upper half plane with an arbitrary pattern P of consecutive
boundary segments + and — on the real axis. They have calculated most of the resulting profiles
and (multipoint) correlation functions of the order parameter ® and the energy density . Here
we use conformal invariance in order to determine the corresponding quantities for the particles
from these results in the half plane. This approach proceeds in three steps

(i) One constructs a conformal transformation w(z) which maps the region outside the parti-
cle in the plane z = x + iy = rexp(if) to the upper half plane H, with w = u+iv = ry, exp(ify).
Here one has 0 < # < 27 and 0 < 6, < w. According to Riemann’s mapping theorem, such
mappings exist because the outside region is simply connected.

(ii) For the segment composition of a given particle P the transformation w(z) implies a
corresponding segment pattern P of the half-plane boundary. For this one finds the resulting
half-plane correlation functions (...)m,.

(iii) Finally, conformal invariance at the critical point enables one to obtain the correlation

functions outside the particle because they are related to the ones in the half plane by a local



scale transformation [24]. For N-point correlation functions of the primary, scalar operators ®
and e, this relationship is given by [24, 35, 36, 58, 59]

dw |*01| dw |*02 dw |*on
_ s _ _ |QuwTerdwme: ) dw 2.1
(O1(z1, 21)O2(22, 22)...ON (2N, ZN)) P & 1o Ton (2.1)
X (O1(wy,w1)O2(we, W2) - - - On (WN, WN))Hp
(...)p is the thermal average in the presence of particle P,
wj = [w(2)]o=z; , dw/dz; = [dw(z)/dz].=; , (2.2)

and each operator O; can be either ® or ¢ with their bulk exponents z¢ = 1/8 and z. = 1,
respectively. The operator € describes the deviation of the fluctuating energy density from its
average in the bulk, i.e., the bulk average (¢) of ¢ vanishes*. Here we follow common usage [35]
to parametrize a point in the z plane instead by its Cartesian coordinates z,y by the complex
coordinates z = x + iy, Z = x — iy, which are regarded to be independent. A corresponding
notation is used for the w plane.

In the present section we determine one-point correlation functions (O(z, z))p and we shall
use Eq. (2.1) for N = 1 only. Two-point correlation functions (N = 2) will be considered in the
appendices.

The simplest type of the particles P is the one with a homogeneous boundary. For this
type both the particle boundary and the pattern P of the upper half plane consist of a single
segment with surface universality class a € {+, —,O}. Denoting Hp in this case by H,, the

corresponding profiles of O = ®, ¢ are given by
(O(w, @), = AYv*0 (2.3)

where v = Imw and where within the convenient normalization of primary operators via their

bulk two-point correlation function,
(O(r1)O(13)) = |1y — ry|72%0 (2.4)

the values of the amplitudes Ag) are [24]
1

A=Ay =28 AP =0, AP = AD) = A0 = (2.5)
For reasons of simplicity, the three circular particles P = [J, J,, Q] in Figs. 1 (a)-(c) are

taken to have radius 1 and to be centered at the origin® z = 0. In this case the mapping w(z)

4Also for systems in more than two spatial dimensions d this subtracted operator ¢ is the most convenient
quantity to work with when discussing energy density profiles by means of the field theoretic renormalization
group, see, e.g., Egs. (3.343) and (3.344) in Ref. [22] as well as Ref. [60], where a half space with homogeneous
boundary condition is considered. For an ordinary boundary O and at bulk 7., Eq. (3.344) predicts a simple power
law decay upon approaching the bulk, like in Eq. (2.3) below, but with the value the exponent z. = (1 — «)/v

adopts in d dimensions; see also Ref. [60].
5The later generalization to particles with an arbitrary radius and position of the center trivially follows from

a dilatation and translation.



from their outside region to H is provided by a Mobius transformation which together with its
derivative is given by®
z+1 dw(z) 2i
w(z) =1—— = — . 2.6
(2) z2—1" dz (z —1)2 (26)
This maps circles onto circles and, in particular, the points z = exp (if) on the particle surface

with 0 < 6 < 27 to the points

w(e?) = cot(0/2), 0<60<2r (2.7)

on the boundary of H. The action of the map given in Eq. (2.6) is depicted in Fig. 3.

4 T T T 4 : : .
3 2 | ]
IEEEEEEEEEEEEEEEEEEE R
\“‘\
22t T S 0 ,})/}) 1
o
1 . -2 r T
O _4 1 1 1
-2 -1 0 1 2 —4 -2 0 2 4
u
(a) (b)

Figure 3: The domain outside the circular particle centered at the origin in the z-plane and its boundary
depicted in (b) are conformally mapped by the transformation w(z) in Eq. (2.6) to the upper half w-plane
and its boundary depicted in (a). In particular, the switching point z = —1 on the particle boundary is
mapped to its counterpart at the origin of the w-plane; a green dot marks its location. The circles shown
in (b) are the pre-images of the lines of constant v and v in (a). They shrink and accumulate towards
the point z = 1 (marked by an orange dot) which is the pre-image of w = oo in (a). The two small white
regions anchored at z = 1 in (b) emerge due to mapping only to a finite number of lines in the w-plane

in (a).

Besides studying ¢ and ¢, we are also interested in how the particles P affect correlation
functions containing the symmetric and traceless Cartesian stress tensor Ty (x, y) or its complex
counterpart [58, 59]

T(z) = —n[Tyz(x,y) — iTyhy(x,y)]. (2.8)

6See for instance Ref. [61].



The average (T'(z))p follows from its transformation formula [35]

w 2 3'UJ 23 2'LU 22 ?
<T<z>>p=<i—z> (T + 5S((2)), S(w(z))z%—%(%) (2.9

with the Schwarzian derivative S of w(z), because the average (T'(w))m, in the half plane with
arbitrary pattern P is known from Ref. [41]. For particles P with a homogeneous boundary a
the corresponding expression (T'(w))m, vanishes [38] so that in this case (T'(z))p = S/24.

The two eigenvalues A (z,y) > 0 and A_(x,y) = —A;(z,y) of the 2 x 2 matrix (Ty(x,y))p

are given by

Ax(z,y) = £[(T(2))pl/m (2.10)
because the product A A_ = —)\i = —)\2 equals the determinant
—(Toa)p — (Tay)p = —[(T(2))p[* /7 (2.11)

of the matrix.

We also consider the matrix with the elements T;.., Tyy, 19, and Ty, which arises from the
Cartesian one by rotation to the local radial and tangential directions of the circular coordinates
centered at the particle P and which is also symmetric and traceless. One finds T}, = [(z? —
Y o + 22yTyy|/r? and Tpg = [(2% — y?) Ty — 22yTy,]/r?; their averages can be expressed by
that of T'(2):

Re[*(T(2))p], (Tro(z,y))p = . Im([2*(T'(2))p] . (2.12)

(Tor(z,y))p = = W

- lz?
2.1 Symmetric circular Janus particle

2.1.1 Profiles of the order parameter ® and of the energy density ¢

The surface universality classes + and — on the upper and lower arc, 0 < §# < m and 7™ < 0 < 27,
respectively, of the boundary of the Janus particle P = J in Fig. 1(a) imply via Eq. (2.7) the
simple half-plane boundary-pattern P with + and — for v > 0 and u < 0, respectively (see Fig.
3). The corresponding one- and two-point correlation functions of ® and € have been calculated
in Ref. [56]. Denoting the present half-plane situation Hp by H_, the one-point correlation

functions are

(®(w, ), = A0/ cos b, (2.13)
and
(e(w, @), = AP~ (4 c08” By — 3) , (2.14)
with cos6, = Rew/|w|. From Egs. (2.1) and (2.6) one obtains the profiles around the Janus
particle J:
2
)\, — )\ . __ol/4 Yy
<(I)(Z7Z)>J - <(I)(Z7Z)>Clrcle,+ COs ‘9w - 2 (‘2’2 o 1)1/8’22 _ 1‘ (215)
and )
_ _ 1 16y
— 2 —
(e(z,2))5 = (e(2, Z))circle,+ (4 cos” Oy — 3) = E=TD {‘22 —iE 3} . (2.16)

10



Here (O(z, 2))circle,+ = Ag) [2/(|z]? — 1)]*© for O = ®, ¢ are the profiles around a unit circle
with homogeneous boundary condition +, which via Eq. (2.1) follow from Egs. (2.3), (2.5), and
(2.6).

The profiles in Egs. (2.15) and (2.16) around the Janus particle in Fig. 1(a) are shown
in Figs. 4(a) and 5(a) below. They display the expected symmetries with (®(z,Z)); being
symmetric and antisymmetric by reflection about the y and x axis, respectively, and (¢(z, 2));

is symmetric about both axes.

3 ; ; ; m 3 ; ; ; m 3 ; ; ; O
15+ 1 t105 15 F 1105 15+ 1 F105
g 0 g e H 0 g 0 i O | H 0 g 0 | @ | H 0
~1.5 F 10 g5 L5 L i -05 L5} 10 s
-3 L L L . -3 "‘r L 4"“ . -3 L L L .
-3 —-15 0 1.5 3 -3 —-15 0 1.5 3 -3 —-15 0 1.5 3
i i i
(a) (b) (c)

Figure 4: Order parameter profiles for various realizations of the generalized Janus particle J, in Fig.
1(b) computed from Eq. (2.37). The opening angle m — 2x for the range of the — boundary condition
(blue) takes the values 7 (a), 2m/3 (b), and 7/3 (c). The dotted blue line represents the zero of the order
parameter. The particle surface is indicated by the black circle z? +y? = 1. The ranges of the boundary
conditions + and — are marked as red and blue parts of the inner ring, respectively. We note that the
order parameter profile diverges upon approaching the particle surface. There, for technical reasons, the

color code is fixed to the maximum scale available in the legend.

For |z| \, 1, i.e., upon approaching the particle surface, the particle boundary attains the
character of a straight line and the profiles show the behaviors corresponding to Egs. (2.13) and
(2.14). Their behaviors at large distances |z| > 1 will facilitate to find the SPOE for the Janus

particle.

2.1.2 Profile of the stress tensor

Taking the expression
(T(w)u_, =1/2w?) (2.17)

for the mean stress tensor for the half plane configuration H_, from Ref. [56], we obtain from

Eq. (2.9) the corresponding average

2

(T(2))s = m

(2.18)

in the region outside of the Janus particle in Fig. 1(a). The Schwarzian derivative S vanishes
for the present Mobius transformation in Eq. (2.6). The right hand side of Eq. (2.18) diverges
at the switching points z = +1.
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Figure 5: Energy density profiles for various realizations of the generalized Janus particle J,, in Fig. 1(b)
computed from Eq. (2.38). The opening angle m — 2 for the range of the — boundary condition (blue)
takes the values 7 (a), 27/3 (b), and 7/3 (c). Note the two regions of high energy density induced by the
switching points; the unfolding divergence towards 4+oo of the energy density is indicated in white. The
energy density diverges towards —oo upon approaching the particle surface; there this is signaled by the
red regions. The dotted blue line represents the loci of vanishing energy density. The particle surface is
indicated by the black circle 2 +y? = 1. The ranges of the boundary conditions + and — are marked as

red and blue parts of the inner ring, respectively.

In order to discuss eigenvectors and eigenvalues of the stress tensor, we start by considering
certain special cases displaying features which are typical for all particles shown in Fig. 1 and
which follow directly from Eq. (2.18) by using Eq. (2.12).

(i) For points (x,y) = (cos #,sin 6) right on the particle boundary the expression in the square
brackets of Eq. (2.12) is real so that (7,p) vanishes, the radial-tangential matrix is diagonal,
and the eigenvectors are parallel and perpendicular, respectively, to the boundary, with the
eigenvalue (T},)y of the vector perpendicular to the boundary being equal to” 1/(2m sin?8) > 0.

(ii) By the same argument one finds that along both the z and the y axis the eigenvectors
point into radial and tangential directions, i.e., perpendicular and parallel to the boundary.
For the two axes this can be inferred as well from the Cartesian matrix for which (7;,); = 0,
which can be expected from the symmetry of the Janus particle. For the two semi-infinite
lines on the y axis, which emanate from the centers y = +1 of the + and — segments, the
eigenvalue (T},); = (T},); belonging to the vector perpendicular to the boundary, is given by
2/[m(y?+1)2] > 0. For the two semi-infinite lines on the z axis, emanating from the two switching
points x = +1, the eigenvalue (7T,,); = (T,,)j corresponding to the vector perpendicular to the
boundary is given by —2/[r(x? — 1)?] < 0.

In order to obtain results for arbitrary points (x,y) outside the particle J we have calculated

"The vanishing of the off diagonal matrix elements, corresponding to the components parallel and perpendicular
to the boundary, and the finiteness of the eigenvalues (in the diagonal) inside the segments with homogeneous
boundary conditions, persist for correlation functions containing the stress tensor. This is in line with well known

corresponding properties at the boundary of a half plane in arbitrary spatial dimensions.
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the Cartesian components

21— 2r2cos 20 + r* cos 46

Tyo(, =
Tec(@,9))s T (1 —2r2cos 260 4 rt)?

(2.19)

’ 4 (r? 6—1)r2 9
7 COS 2 1) r“sin?2
Toy(x, = —— 2.20
< y( y)>J T (1 — 2r2 cos 29—|—T4)2 ( )

by using Eqs. (2.8) and (2.18) with = rcosf and y = rsinf. For the positive eigenvalues

A4 (z,y) and the corresponding normalized eigenvectors €, (x,y), this yields

2

A = 2.21
+@y) (1 —2r2cos20 +1r*)’ (221)
which is consistent with Eq. (2.10), and
N —r?sin26, 1% cos 26 — 1
€+($,y) = ( ) ’ (222)

V1 = 2r2cos20 + r4

in terms of the x and y components and in agreement with the previous notation (z,y) =
r(cos @, sinf). The eigenvectors e€_(x,y) belonging to the negative eigenvalue \_ = —\, are

perpendicular to €4 (x,y). The eigenvectors and eigenvalues are visualized in Fig. 6.

3 ‘ i 3 7 0.8
KA AAAODINNEETS ]
dgz%“‘“?%% g

1.5 ¢ %; 5% AR L5 f 10106
S s 04
S e [ o
= 00 24 gm‘?? ]
AR ,ﬁ%g
R
—1.5 [ oSy ] —15 | 1 H o2
B P P2 DN ]
433 AR AR RN 0,

-3 —-15 0 1.5 3

Figure 6: Stress tensor profile around the circular, symmetric Janus particle. (a) The normalized eigen-
vectors €4 (z,y) and €_(z,y) of the stress tensor corresponding to the positive and negative eigenvalue,
in red and blue, respectively. (b) The normalized eigenvector € (z,y) (blue arrows). (¢) The normalized
eigenvector €_(z,y) (blue arrows). The color plot in the background of panels (b) and (c¢) corresponds
to the positive eigenvalue Aj(x,y). Like in the corresponding geometry of the upper half w-plane (Fig.
3(a)), along the particle surface and away from the two switching points the eigenvalue \; is finite and €
is perpendicular to the particle surface, while upon approaching the switching points in radial direction,
Aj diverges and e, is tangential to the particle surface. We mark the divergence of Ay, by fixing the
corresponding color code in (b) and (c) to red.

2.2 Janus needle

We now turn to the Janus needle Jn shown in Fig. 1(d) and take it to extend from z = —1 to

x = 1 on the real axis of the z plane. Here the two boundary segments with boundary conditions
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+ and — are the upper and lower rims of the needle, respectively. Again, there is a conformal
transformation w(z) which maps Jn onto H_, i.e., onto the upper half w-plane with boundary
conditions + and — along the positive and the negative real axis, respectively.

This function w(z) is the analytic continuation of

w(z) =i EJ_F 1 (2.23)

from z = x > 1 to the entire z-plane which is cut along the needle. For example, the regions
z = {x >1;2<—1;iy; —1 <a <1(upper rim); —1 <z < 1 (lower rim)} (2.24)
in the z-plane are mapped to the regions

wz) = {iy/(@+1)/(z—1);iv/(@+1)/(x—1); (sign(y) +ily)/y/1+ y?;
VA +a)/(1—2); —/1+2)/(1—2)} (2.25)

in the upper half w-plane, respectively; all square roots are positive. Correspondingly, dw/dz is
the analytic continuation of —w(z)/(2%2 — 1) from z = x > 1 to the entire z-plane which is cut

along the needle.

2.2.1 Profiles of ® and ¢

Similar to Sec. 2.1 the profiles of O = ®, ¢ for the Janus needle are determined via the
transformation formula in Eq. (2.1) and the half plane expressions in Eqs. (2.13) and (2.14) by
using the above relations to express |[dw/dz|, v, and cos 8, in terms of x and y.

For the needle particle with homogeneous boundary condition 4, which we denote as “nee-

dle,+” we obtain, by using

v o= Im(w) = {\/(@+1)/(z —1); /(@+1)/(@ = 1); |yl/v/1+%;
lyl/VI+2(VT=2)]; [yl/ VT +2(vV1—2)}, (2.26)

the result
(O o/ AT = {22 1) 7 (2217 (T 7)™
lyl =" ; y| 7o} (2.27)

In the above regions of the z plane we obtain for the Janus needle Jn, by using the relations

cos 0, = R|e(|) {0 0; sign(y)//1+y2%;1; —1} (2.28)

the profiles

. _ -9/8
(@2, 2))an/ A5 = {0505sign()lyl 5 (VI+92) syl —lyl 75 (2:29)
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and

_ 3 3 1 — 3y? _ _
(e unf AL = { = P im I T 1o e
These expressions for the five regions of the z plane (see Eq. (2.24)) are exact and instructive.

For our later construction of the SPOE we need the far-field behavior for z pointing in an
arbitrary direction. This is obtained by using the transformation law given in Eq. (2.1) in which

the conformal map given by Eq. (2.23), w(z) =iy/1+ [2/(z — 1)], is expanded for large z. This
leads to

-1 _ 51
- 1/8) |—1/4% ~ — % 9 -2 -2, =2
(®(2,2))gn = =282 7V T{Ha(zm +3(22+2 ))} (2.31)
and 5 )
(e(2,2))gn = 512\—2 {1 + o1 (101272 +17 (272 + 2—2))} : (2.32)

in leading and next-to-leading order. One may check that Eqgs. (2.31) and (2.32) are consistent
with Egs. (2.29) and (2.30), respectively. The corresponding far-field expressions for the needle

with a homogeneous boundary condition (“needle,+”) are given in Eq. (B.9).

2.2.2 Stress tensor

The profiles of the complex stress tensor follow from the transformation law in Eq. (2.9):

1 1 9 1

(T(2))necdie+ = =53 {T(=))m = 16 (22 — 1)%°

1602 172 (2.33)

For the needle with uniform + boundary conditions on both rims the corresponding half plane
boundary is homogeneous so that (T'(w))m, vanishes - leaving only the Schwarzian contribution.
For the Janus needle of Fig. 1(d) the stress profile of the corresponding —+ half plane boundary
is nonvanishing and given by Eq. (2.17) so that both terms in Eq. (2.9) contribute to the leading
behavior of the profiles in Eq. (2.33) which differ by a factor of 9.

On the needle boundaries (—1 < z < 1, y = £0), on the positive and negative y semiaxis
emanating from the centers (z = 0,y = 40) of the + and — segments, and on the two semi-
infinite lines on the x axis emanating in radial directions from the two switching points x = +1,
(T'(2))n is real and thus (T},)n vanishes and the eigenvectors point into the x and y directions.
The eigenvalue (T},)n, associated with the eigenvector perpendicular to the boundaries of the
Jn, is positive and equals 9/[167(1 — 22)?]. The eigenvalues (T,)sn and (Tyy)m of the radial
eigenvectors on the y and = axes are given by 9/[167(y%+1)?] and —9/[167 (22 —1)?], respectively.
The qualitative features of these results for the Janus needle Jn resemble those of the circular

Janus particle J discussed between Eqs. (2.18) and (2.20).

2.3 (Generalized Janus particle

The generalized Janus particle P = J,, of Fig. 1(b) has a circular shape and its two boundary
segments + and — extend along the angular intervals —xy < 6 < 7w+ y and 7+ x < 0 < 27 — ¥y,
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respectively, and we consider it for various values of y within the interval —7/2 < x < 7/2. For
X = 0 the particle degenerates to the Janus particle shown in Fig. 1(a) and for x = 7/2 and
X = —m/2 to the circular particles with homogeneous boundaries + and —, respectively. For
all x the particle is symmetric about the y axis. Moreover, the particle configurations remain

invariant under the combined changes
y— -y, X——X, + ¢— — ontheboundary, (2.34)

which are the counterpart of the antisymmetry about the x axis of the Janus particle P = J of
Fig. 1(a).
In order to calculate the profiles it is convenient to use instead of Eq. (2.6) the conformal

transformation

zeX + 1 dw(z) 2i ,
= t n = — > X 2
w(z) = tan y + el P (oix = 1)26 (2.35)

in which the Mdbius transformation (Eq. (2.6)) is preceded by a rotation of the particle and
followed by a translation along the real axis of H. This maps the two boundary segments of J,
with + and — boundary conditions onto the positive and negative real axis of H. Indeed, Eq.
(2.35) implies that

w(z =€) = tan x + cot[(x + 0)/2] (2.36)

(compare with Eq. (2.7)) and in particular that w(z = expli(—x £ 0)]) = $o00 and w(z =

expli(m + X)]) = 0. The advantage of this approach is that the system Hp on the right hand
side of Eqgs. (2.1) and (2.9) is again H_, as in Sec. 2.1 with the corresponding profiles given by
Egs. (2.13), (2.14), and (2.17).

2.3.1 Profiles of ® and ¢

Since also the mapping according to Eq. (2.35) implies that Ap(|dw/dz|/v)*© equals the result
(O(z, 2)) tcircle for a homogeneous circle (given below Eq. (2.16)), the scale transformation given
by Egs. (2.1), (2.13), and (2.14) yields

<¢(Z32)>JX = <(I)(sz)>circle,+c (2.37)
and
(e(2,2))3, = (€(2,2))circte+ (4C% —3) , (2.38)
where C = C(x; z,y) is given by
2, .2 .
Clx:z,y) = cosfy = 220 — 2+ @ Fy +Dsing (2.39)

ol \/[2?4 + (@2 +y? 4+ 1)sinx]? + (22 + y%2 — 1)% cos? x

upon using Eq. (2.35).
As expected, the profiles in Egs. (2.37) and (2.38) exhibit all symmetry properties discussed

before Eq. (2.35); and their near surface behavior shows the same features as discussed for the
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Janus particle at the end of Sec. 2.1.1. For various angles x they are displayed in Fig. 4 and
Fig. 5, respectively. As expected, the energy density strongly increases near the switches in the

boundary condition.

2.3.2 Stress tensor

The complex stress tensor profile around a generalized Janus particle follows from the profile in
H_, (see Eq. (2.17)) and from the transformation in Eq. (2.9). Using dw/dz from Eq. (2.35)
and realizing that the mapping in Eq. (2.35) can also be written as w(z) = i{[z + exp(ix)]/[z —

exp(—ix)]}/[exp(ix) cos x] yields

COS2
TN == e_ix)z : - ol (2.40)

which diverges at the switching points z = +exp (Fiy) and reduces to Eq. (2.18) for x = 0.
For a uniform + boundary one has x = £+7/2, respectively, and, as expected, the expression in
Eq. (2.40) vanishes.

Proceeding for the Cartesian stress tensor as in Eqgs. (2.19)-(2.22) we find

2 cos? X
An (G, y) = (2.41)
71[(7‘2 +2rcos(@ — x) + 1) (r2 — 2rcos(6 + x) + 1)}
for its positive eigenvalue and
1
@S:() (x,y) = 17 (—2r cos 6 (rsinf + sin x) , 7% cos 20 — 2 sin f sin x — 1) (2.42)
with

M = \/(r2 +2rcos(f — x) + 1) (r2 —2rcos(0 + x) + 1) (2.43)

for the corresponding normalized eigenvector. The field of the normalized eigenvectors is dis-

played in Fig. 7.

2.4 Quadrupoles

Within the class of particles with a circular shape and inhomogeneous boundary conditions the
Janus particle of Fig. 1(a) is the simplest representative. Here we go one step further and
consider the spherical particle P = Q of Fig. 1(c) with boundary conditions switching four

times so that it exhibits certain features of a quadrupole.

2.4.1 Profiles of ® and ¢

These profiles are determined by following the procedure described in the introduction of Sec.
2 by using the Mo6bius mapping (Eq. (2.6)). The switching points § = 0,7/2, 7, and 37/2 of Q
(Fig. 1 (c)) are transferred by means of Eq. (2.7) to those at the half plane boundary yielding
the pattern P with —, 4+, —, + along the intervals —co < u < -1, =1 <u <0, 0 < u < 1, and
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Figure 7: Stress tensor profile around a generalized circular Janus particle. The arrangement and the
meaning of the panels are the same as in Fig. 6 and the results shown correspond to an opening angle
27/3 of the blue segment.

1 < u < +o00. This half plane system is denoted as H_4_. The corresponding profiles of ®
and ¢ are given by Eqs. (16a), (16b), and (17) in Ref. [42] in terms of Pfaffians of a 4 x 4 and
a 6 x 6 matrix, with the results

181 g2 — 92 U
O (w, @ :-(-) 9.44
< (w w)>H7+7+ v ‘1—'11}2‘ \/m ( )
and
(e(w,w)) = + ! +
S Wy = 3 u—l +v2 (u+1)2 + 02
1 1 2
— 2.45
* u2+vz{ 2" (u—1)2 +v2+(u+1)2+v2} ]1—w2]2} (2.45)
where
11— w?| = /(14 02)2 — 2u2(1 — v2) + u?. (2.46)

Together with the relations
('LL 'U) — (2y,x2 + y2 - 1)
’ (x—1)2+y%

which follow from the Mobius mapping (Eq. (2.6)), the scale transformation in Eq. (2.1) yields

(2.47)

for the order parameter
dzy

(®(2,2))q = <(I)(Z75)>circ1e,+m (2.48)
with (®(2, Z))circle,+ as defined below Eq. (2.16). For the energy density one has
1 4, 1 1 26
Mg = ——— — = (22— 1 il 2.4
Cede = ~mrog-3 -1 (o + ) * 3 (2.49)

(1414) K(z _ 1)1(Z+Z,) e H.)l(z _ 1)> F((2:8) > (=2, —z))} 4 ce.
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We note the expected symmetries under reflection (i) about the particle center, (ii) about
the coordinate axes, and (iii) under a rotation by 90 degrees. While Eq. (2.49) is invariant under
all these symmetry operations, Eq. (2.48) is invariant under (i) but changes its sign under (ii)
and (iii).

Along the coordinate axes the form of Eq. (2.49) simplifies and reads

3 4 2?-1

<5(z72)>Q|y=0 = 2_1 3 2+ 1)2 . (2.50)

We point towards the leading, diverging behavior (¢(z, 2))q|y=0 — 2(m—3_1), as x \, 1 approaches

the switching point at z = 1.

Expanding Egs. (2.48) and (2.49) for large distances r = /z2 4+ y? > 1 to leading and
next-to-leading order yields

1
B(2 3 — 99/4 Ty 1 —25/4 951
< (Z’Z)>Q (x2_|_y2)17/8 +8(x2+y2) —I—O(T‘ ) ( 5 )
and
501 7 112 + 15022y + 11y .
e(z, z = — + — +0(r=°). 2.52
< ( )>Q 3x2+y2 (x2+y2)2 3(x2+y2)5 ( ) ( )

The profiles (®)u_, ., (P)q, (€)m_,_., and (e)q in Eqgs. (2.44), (2.48), (2.45), and (2.49)
are visualized in Figs. 8(a) and 8(b) and in Figs. 9(a) and 9(b), respectively.
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i
(a) (b)

Figure 8: Order parameter profile (®(z, 2))q around the quadrupole particle (b) and the corresponding
profile (®(w,w))m_,_, in the upper half w-plane (a). The order parameter vanishes along the dotted
blue lines and diverges upon approaching the real axis in (a) and the particle surface in (b). Upon
approaching divergences, the color code is fixed to the one corresponding to the maximum value available
in the legend.
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Figure 9: Energy density profile (¢(z, z))q around a quadrupole particle (b) and the corresponding
profile (e(w,w))m_,_, in the upper half w-plane (a). The energy density vanishes along the dotted blue
lines and diverges towards +o00 at the switching points, as indicated by the white regions. The red regions
close to the real axis in (a) and close to the particle surface in (b) correspond to the divergence towards
—oo of the energy density. There, the color code is used as indicated in Fig. 5.

2.4.2 Stress tensor

The result

T, , = — (w—“> (2.53)

2w? \w? — 1
for the stress tensor profile in the half plane follows from Eq. (D2) in Ref. [41] and yields, via

Egs. (2.9) and (2.6), the profile
822

T =— 2.54
< (Z)>Q (24 — 1)2 (2.54)
outside the quadrupolar particle Q. This should be compared with its counterpart in Eq. (2.18)

outside the symmetric Janus particle J. The decay

(T(2))q ~ % (2.55)

for large distances from the quadrupole Q is faster than the corresponding decay o z~% implied
by Egs. (2.18) and (2.40) for the particles J and J,, respectively, which exhibit a dipolar
character.

The discussion of the eigenvectors and eigenvalues for characteristic special cases of the
quadrupole in Fig. 1(c) proceeds like in Sec. 2.1.2 for the circular Janus particle J. Due to
Eq. (2.54) the expression inside the square brackets in Eq. (2.12) is real, (i) right on the
boundary (z,y) = (cos d,sin ), (ii) on the semi-infinite lines emanating from the segment centers
(z,y) = £(271/2,27Y2) and (x,y) = £(2-/2, —271/2) in radial directions, and (iii) on the semi-

infinite lines on the x and y axis outside the particle, which emanate from the switching points
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(x,y) = £(1,0) and (z,y) = £(0,1) so that the eigenvectors point into the radial and tangential
direction, respectively. The eigenvalues (7T},)q belonging to the radial eigenvectors follow from
Eq. (2.12) as 2/[nsin?(20)] for case (i), 8r%/[x(r* + 1)?] for case (ii), and —8r2/[x(r* — 1)?] for
case (iii).
For arbitrary points (x,y) we have calculated the Cartesian components
8r2 (r8 cos 60 + (1 — 2r?) cos 26)

Trz)Q = — 2.56
(el 7 (1 — 2r cos 40 + 8)* (2:36)

and
B 8r2 ((2rt 4 1) sin 20 — r® sin 66)

TV —
Tl 7 (1 — 2r cos 40 + r8)?

(2.57)

from Eqgs. (2.8) and (2.54), and we find for the positive eigenvalue and its corresponding eigen-

vector
Ao(z,y) = 8r° (2.58)
Qi ¥ ~ (1 —2rtcos4 +13) ’
and
N sin @ + rsin 36, cos @ — r* cos 36
ey(zy) = | ), (2.59)

V1 —2rtcos40 + 8

respectively. The vector fields e (z,y) are visualized in Fig. 10. Equations (2.56)-(2.59) should
be compared with the corresponding expressions in Eqgs. (2.19)-(2.22) for the Janus particle J.
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Figure 10: Stress tensor profile for the quadrupolar particle Q. The arrangement and meaning of the

panels are like those in Figs. 6 and 7.
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3 Small particle operator expansion (SPOE)

Here we present the SPOEs for circular Janus particles, Janus needles, generalized circular
Janus particles, and circular quadrupoles (see Fig. 1). They are denoted as P = [J, Jn, J,, Q],
respectively. These expansions make it possible to determine the free energies of interaction
between these particles and distant objects. The presence of a small particle P inserted at the
position (zg, Zp) and suspended in a critical medium can be regarded, within a coarse-grained
picture, as a local modification of the Boltzmann weight:

é;;%:l—l—slzozl—l—sg)—l—sg)—l—sg), (3.1)
where 0Hp (20, Zp) stands for the effective Hamiltonian, measured in units of kg7, of the particle
P. In Eq. (3.1) the small deviation from unity is quantified by sp, with the latter being expanded
in terms of a complete basis of operators of the corresponding bulk CF'T. For the particles shown

in Fig. 1, we have the expressions

s = 3{3 — R? {532032 —2(e¥0Z + e-%aago)} }s(zo,zo) + O(RY), (3.2)

SS(I)) — 213/4R9/8Z'{(ela820 _ e_m850> + R2 |:_7 (e3zaL_3 _ e—37,aL_3> +

n 32 (esmag,o _ e diag3

21 zo> - % (eiaagoafo - e_iaagoazo)} @(z()’ 50) + O (R5+1/8) s (3.3)

and
sgﬂ) = 8R? {ezmT(zo) + e_%aT(Zo)} +0 (R4) (3.4)

which hold for symmetric circular Janus particles;

© _ DJ3 D)2 D 17T ¢ ia g2 —2iar 52 5 5
Sy = 5{§+(5 — 50005 + 35 (€70, + 70 )| pe(20,20) + O (D7), (3.5)

9/8 2 ' '
Sgﬁ) — 217/8 <§) Z‘{<eiaazo - e—iaazo) + <§) |:_1_94 <e3zaL_3 . e—3zo¢l_—/_3) +
(31203 — e7393 ) — (™02 0z, — e—iaagoam)} (20, 70) + O (D1/#) | (3.6)

and )

D . o
(5) {emaT(zo) + e_2w‘T(zo)} +0 <D4) , (3.7)
which hold for Janus needles;

s = R {3 — 40 — 8io* R (¢0; — e 70 ) + R* (—1+ 129" — 169") 2,0z, +

bR - 67?) (2R + e—zmaio)} (20, 70) + O(RY (38)
sgq;) — 2V/ARYS {O’ + 8V’ R (em@zO - e_mago) + 80 R? (1 - 872> 0200z, +
+ (32/3)07°R* (%02, + e—%aago)} (20, %0) + O (R*T/8) (3.9)
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and

8312 = 8v°R? {e%aT(zo) +e 2T(%) —ioR (e3ma§0 - e_3m8§’0> +0 (R4) (3.10)

with v = cos x, 0 = sin x, for the generalized circular Janus particles; and for circular quadrupole

particles one has

sg) = R E + 7R2820820} e(20,20) + O(RY), (3.11)
(@) 225/4 17/8, | .2ia 52 —2ia 52 = 4+1/8
sq = TR ile™ 0, —e 0z |®(20,%0) + O (R ) , (3.12)
and
M _  pa|l40 7 128  fia 72 —4dia 72 48/ Jia —dia T -
sq = R {7L_2L_2 ST (e¥0L2, +eHL2,) + - (e L_y+e M L_4)|I(20, 20) +
+ O(R9). (3.13)

Concerning the derivation of Eqgs. (3.2)-(3.7) we refer to Appendix B, of Egs. (3.8)-(3.10)
to Appendix C, and of Egs. (3.11)-(3.13) to Appendix D. For the complex coordinates defined
below Eq. (2.1), the complex derivatives 0,, and 0, are related to the Cartesian ones according
to

Oy = Oz + 0z, , Oyo =1 (05, — 03)) - (3.14)

Here zy is the position of the particle center in the z plane and R is the radius of a circular
Janus particle, of a generalized Janus particle, or of a quadrupolar particle. D is the length of
a Janus needle. The particle orientation is characterized by the angle o of the counterclockwise
rotation necessary in order to obtain the actual orientation from the standard one illustrated in
Fig. 1.

yll ylk ylk

Figure 11: Illustration of the rotation angle a.

The meaning of the operators L_3® and L_3® in Egs. (3.3) and (3.6), respectively, and of
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the operators in (3.13) follows from the definitions [35, 36, 24, 62]

dz
LP\II(Z()v ZO) = / 2 .(Z - Zo)p—l—lT(z)\P(zO) 20)7
Czo YiNA
_ dz _
L0 (20, 20) = / (2 — 20 M T(2) U (20, 0) (3.15)
CZO YiNA

where p = 0,£1,£2,..., ¥ is any local operator (primary or not) of the theory, and where
the closed integration paths C,, and Cz, enclose counterclockwise the points zp and Zp, respec-
tively. Obviously one has L_sl(z0,20) = T(20), L—31(20,20) = 05,T(20), etc. The meaning of
L2 ,1(20, 20) = L_2T (%) is also provided by Eq. (3.15) as well as of L_1 (20, Zp) = 0., ¥(20) due
to the shift property of the stress tensor integral (compare, e.g., the conformal Ward identity
given in Eq. (B.11)). We note that L_1L_5l(29, Z0) = 05,1 (20) while L_oL_11(z0, Zp) vanishes
because 0,,1(z9,Zp) = 0. This is a simple example of the non-commutativity of the operations

L and is in line with their Virasoro algebra [35, 36]:

C
[Lp7 Lq] = (p - Q)Lp—l-q + _Q(q2 - 1)‘Sp—i-q,o

12
- = - c
[LI“LQ] =P —q) Lptq+ EQ(QZ = 1)dp+q,0 (3.16)
[LI“ EQ] = O )

with ¢ = 1/2 for the Ising model. Here the square brackets denote a commutator®

In our operator terms in Egs. (3.2)-(3.13) the dependence on the particle sizes R or D enters
via a prefactor R* or D* with the scaling dimension x of the operator and the dependence on the
particle orientation « via another prefactor exp(ioca) with the “spin” o of the operator. While
the spin vanishes for the primary, scalar operators O = ¢, ®, or I, for a descendant operator
W of the form ¥ = L_,, L_p, -+ Ly, L_p, - -~ O with positive integers ni,na, ..., my,ma,...
the scaling dimension equals zy = nqy +ng + --- +mq + mg + --- + o and the spin equals
oy =ni+ng+---—mg—mg—.... Like L_; and L_1, which refer to translations (shifts),
the operations Lg, Lo refer to dilatations and rotations and the scaling dimension zg and
the spin oy of an operator U appear in the relations Lol = AgV and LoV = Ay¥ where
Ay = ((zy +0g)/2) and Ay = ((zy — oy)/2) [35, 36].°

8When acting with [Ly, Ly] = LpLq — LqL, on an arbitrary operator ¥(zo,%o) and taking into account Eq.
(3.15), the integration path [ dz1 belonging to L, encircles zo outside of and inside of the corresponding path [ dz2
belonging to L4 in the first and second term of the commutator, respectively. The difference can be determined,
e.g., by evaluating for fixed z; the change in fdzz when it encircles zp outside rather than inside of z;. This
change is determined by the two singular terms T'(z1)T(z2) — (¢/2)(21 — 22)~* 4+ 2T ((21 + 22)/2)(21 — 22) 2 in
the OPE of T'(z1) and T'(z2) which finally lead to the two contributions arising when the right hand side of the
first Eq. (3.16) acts on ¥(zo, Zo).

9For the primary operators @ = ¢, ® these relations are consistent with the conformal Ward identity (see
Eq. (B.11)) and the corresponding relation Lol = 0 is obvious from Eq. (3.15). For descendant operators the
relations follow by commuting Lo or Lo — by means of the Virasoro algebra — through all the L_, or all the
L_,, to the right until they arrive in front of @. A simple example is the descendant operator ¥ = L_,0O
for which xv = n 4+ zo and oy = n is corroborated by the Virasoro algebra, which yields LoV = LoL_,O =
(L—nLo+nL_n)0 = ((z0/2) + n)L_nO = ((zv + ow)/2)V.
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Apart from these general properties of a d = 2 conformal field theory, in the Ising model the
two primary operators ¢ and ® are “degenerate on level 2”7 [35, 36]. In Appendix F we comment
upon this degeneracy. In the Ising model the operations L_» and L%, are not completely
independent because their action on on the primary operators € and ® gives the same result up

to a multiplicative factor:

3

L_QO(Z(), 5()) = m

L?,0(2, %), O=¢,9, (3.17)
which implies the proportionalities L_se(z0, Z0) = (3/4)92 e(z0, Zo) and, similarly, L_y® (20, Z0) =
(4/3)02,®(z0, z0) of their descendants of level two. In our presentation of Egs. (3.2)-(3.13) we
have opted in favor of 8305 and 83()(1) whereas L_se and L_o® do not appear.

The above quantities sp are series of operators with increasing scaling dimensions and being
consistent with the particle symmetries. The prefactors of the operators are fixed so that all
n-point correlation functions (¥1Wy--- W, )p in the presence of the particle P are represented,

at large distances from it, via
<\I’1\I’2"'\I’n>p — ((1 +SP)\I’1\I’2"'\I’n>, (318)

in terms of the series ((1 + sp)¥1Wy--- ¥, ) of (n + 1)-point bulk correlation functions. Since
for a given particle the same operator series sp applies to all the various multipoint correlation
functions, the SPOE is a nontrivial property which is quite similar to the well known operator
product expansion in the bulk where the role of the “small” particle is taken by the product of
two “nearby” operators. We recall that (---) stands for a thermal average in bulk.

We have determined the prefactors from the comparison of the effect of the particle onto
the profiles (i.e., one-point correlation functions) obtained in Secs. 2.1, 2.2, and 2.4. There the
product ¥ Wy --- WU, in Eq. (3.18) is replaced by ¢, ®, or T" as well as in two-point correlation
functions, obtained in Appendices B and D, where ¥V, ---W,, is replaced by e, &P, or e¢,
order by order in their large distance expansions. While these prefactors refer to particles in the
standard orientation & = 0 and for the standard size R = D/2 = 1, the prefactors for arbitrary
orientations « and sizes R and D, as given in Egs. (3.2)-(3.13), follow from the dilatation
and rotation properties of the operators appearing in sp which are determined by their scaling
dimensions and spins!?.

We close this section with a few remarks.

1. As expected, the operators in the SPOEs of the two Janus particles J and Jn are the same,

only their prefactors are different.

9The corresponding transformation for, e.g. a Janus circle J is 2’(2) = (2 — 20)/[R exp(ia)], which maps the
Janus J(20, R, @) in the z plane to the standard one J(0, 1, 0) in the 2’ plane. One may check that our SPOE given
in Egs. (3.2)-(3.4) is consistent with the corresponding local scale transformation which, e.g., for the profile of
a nonscalar, descendant operator ¥ reads [35, 36] (¥(z,2))j(r,a) = (d2’/d2)2¥ (dz' /dz)Av ((2',2"))301,0)- This
form is consistent with the scale transformation given in Eq. (2.9) for ¥ = T because zr = or = 2 and the
Schwarzian vanishes for the present transformation. It reduces to the corresponding scale transformation of the

form given in Eq. (2.1) if ¥ is a scalar operator with oy = 0.
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2. Both for Janus circles J and for Janus needles Jn as well as for the quadrupolar particle
Q there is no order parameter “monopole” contribution o« ® in their operator expansions.
But — in agreement with their profiles (®) in Eqs. (2.15), (2.31), and (2.48) — the
expansions in Egs. (3.3) and (3.6) start with a dipole and in Eq. (3.12) with a quadrupole,
which for a = 0 is proportional to i (9, — 0z,) ® = 9,® and to i(@go - 8%)) ® = 0,0,9,
respectively. This should be compared with the presence of a ® monopole in the SPOE of

a generalized Janus particle in Eq. (3.9).

3. The even and odd rotational invariances o — a + 7 for s%f ), sg), and sgb) in the case of

each of the two Janus particles J and Jn, and o — a+ 7/2 in the case of the quadrupolar

particle show up clearly in the SPOEs.

4. It is interesting to compare the prefactors of the energy-density operator € in the SPOEs
for the circular unit disk with (i) homogeneous boundary condition +, (ii) Janus boundary
conditions, (iii) quadrupolar boundary conditions, and (iv) homogeneous “ordinary” (or
free) boundary conditions. These prefactors are —1, 3, 5/3, and 1, respectively. Their
signs are as expected because the homogeneous ordering in (i) reduces the energy with
respect to the energy in the bulk. In the other cases, the energy is increased due to the
forced change in the order in the cases (ii) and (iii), and due to the disorder at a free
boundary in the case (iv). Moreover, one expects that for a circular boundary consisting
of more and more alternating + and — sections of equal length (reminiscent of higher and
higher “multipoles”) finally behaves effectively like a system with a homogeneous ordinary
boundary. This is in line with the prefactors decreasing monotonically as one moves from
(ii) via (iii) to (iv).

Finally we note for later use the SPOE for a needle N with homogeneous ordinary boundary
conditions. This expansion is well known (see, e.g., Ref. [47]) and can be written in the form of
Eq. (3.1) with 51(\;1)) =0:

2
2[00 (2 B v 0.

and

s = 7(1)22)2 {ezmT(zo) +e_2mT(2’o)} +0 (D) . (3:20)

4 Interaction between particles

The free energy required to transfer the Janus or the quadrupolar particle P from the bulk phase

to a phase, which exhibits boundaries at large distances from the particle, is given by

6_5}— =1+ <3P>plane with distant boundaries - (4'1)

The quantity dF denotes the free energy in units of kg7, and it vanishes in the bulk because

the bulk average (sp) = 0. In Secs. 5 and 6 we shall use this relation in order to determine
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the interaction of the particles shown in Fig. 1 with boundaries of infinite extent belonging to
a confined geometry ¢ such as a half plane, strips or wedges in which the particle is embedded.
In this case Eq. (4.1) turns into

e =1+ (sp)w - (4.2)

In Sec. 7 we shall study the opposite case in which the boundaries are those of a small distant
object such as another particle P/, which itself can be represented by a small particle expansion
exp(—0Hps) < 1 + spr and for which Eq. (4.1) implies

e =1+ (spsp). (4.3)

As before, (---) without subscript stands for bulk statistical averages.

Concerning the interaction of the Janus and the quadrupolar particles with a distant object,
the dependence on distance is dominated by the operator ¢ in the SPOEs because ()¢ and
<sobjoct€) are in general nonzero. The dependence on orientation is dominated by sg)) if the
object breaks the 4+ symmetry. If it does not, the issue of which is the dominating operator
depends on further details: for the present particles in a strip or wedge with ordinary boundaries,
the orientation dependence is dominated by sg) so that the orientation-dependent free energy
is proportional to R? or D? and R* for Janus and quadrupolar particles, respectively. However,
in the half plane the averages of the orientation dependent terms in sg) vanish and for Janus
particles it is (exp(2io¢)8§0 + exp(—2ia)8§o) € so that the orientation-dependent free energy is
proportional to R? or D3. In the following sections we study these effective interactions in more

detail.

5 Janus particle in a half plane, in a strip, and in a wedge

The cost of free energy for transferring one of the present particles from the bulk into a bounded
system (Eq. (4.2)) depends, apart from the location zy and the orientation « of the particle, on
the boundary conditions and on the shape of the embedding system. As paradigmatic shapes
we consider the right half z plane as well as a strip and a wedge - all three of them with the
real z axis as their midlines. The averages of sp, appearing in Eq. (4.2) for these geometries
in the z plane, follow from the corresponding averages in the upper half w plane H via suitable
conformal mappings w = w(z).

For the right half z plane H the mapping is simply the rotation
w(z) =iz, (5.1)
while for the strip S of width W the function
w(z) = ie™/W (5.2)

maps the lower and upper boundary y = —W/2 and y = W/2 to the positive and negative real
w axis, respectively, and the strip-region —W/2 < y < W/2 onto the upper half w plane. For
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the wedge W with its apex at z = 0 and with opening angle 7/Z the function

(11

w(z) =iz (5.3)

maps the half lines z = |z| exp[—in/(2E)] and z = |z| exp[in/(2E)] onto the positive and negative
real w axis, respectively, and the region z = |z|exp(if) with —7/(2E) < 6 < 7/(2E) onto the
upper half w plane.

The wedge geometry is more general than the half plane and the strip geometry in that it
contains both of them as special cases. The opening angle 7/= can vary between 0 and 27 and
the embedding region degenerates for = = 1 and = = 1/2 to the right half z plane and the
region outside a semi-infinite needle extending along the negative real z axis, respectively. For
m/Z = 0 there is no point z = zy left where to embed the particle. However, by combining
the decrease w/Z N 0 in opening angle with an increase Re(zg) = WE/m * oo of the real
part of the distance vector zg from the apex to the insertion point (keeping its imaginary part
Im(zg) and W > 2|Im(2¢)| fixed) one reaches the situation in which the particle is embedded in
the horizontal strip of width W at a distance Im(zy) from the midline. Clearly, in these limits
the polar angle §p = tan=! (Im(z)/Re(20)) of 2o = |20] exp(ifly) approaches 7wIm(zg)/(WZE) and

vanishes.

5.1 Symmetric Janus circle and Janus needle in a half plane

The free energy 0.F required to transfer the Janus particle from the bulk to the right half plane
with a boundary of universality class a follows from Eq. (4.2) and the SPOEs (3.1)-(3.7) as

e =1+ <s§) + s(é))ﬁa ; (5.4)

the symbol H, stands for the half-plane geometry Re(z) > 0, with uniform boundary condition
a € {O,+} along the boundary Re(z) = 0.

Since the average of the stress tensor vanishes in the half plane, sg) does not contribute
within the orders considered in Eqs. (3.2)-(3.4). Here one finds!!

2
@y _ gk _<E) 1 e
(sy )y, = A 0 {3 ) |3 + 4sin” « (5.5)
and o/s )
P a R . 1 R X
()5 = AG2!/ ($—0) (sin ) {1 ~ 3 ($—0) {39 + 165sin° a}} (5.6)
for the symmetric Janus particle and
@ _ q@D [, D s
<SJH>H"_]’LL —Ag )§{3+1—6|:7—34SH1 OZ}} (57)
and )
@\ _ A@o-T/8799/8 (o 9D . 9 _ D
(8n >Ha Ag’2 D”/° (sin «v) {1 i 2+ 3sin“al ;, D= %00 (5.8)

"Equations (5.5)-(5.8) are obtained most easily within the Cartesian language in which 9y, is replaced by
—(sin )0z + (cos @)Dy, if o # 0.
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for the Janus needle. Ag) is the universal amplitude introduced in Eq. (2.5) and z¢ = Re(2o)
is the distance of the center of the Janus particle from the boundary of the right half plane.
Equation (B.14) is useful for deriving the averages of sgl)) in Egs. (5.5)-(5.8).

5.1.1 Janus particle interacting with an ordinary boundary

Since sgp) does not contribute in a half plane with ordinary boundary, i.e., a = O, Egs. (5.4)-

(5.8) yield

R RN\?/1
w0 (z0/R.0) = ~ I3 1 |3 ()7 (4 dsin’ ) .
O Fwan,0:3(zo/ R, o) n{ + 52g {3 - 5 4 4sin” (5.9)
for the Janus circle and
D D?
6]:Wall,O;Jn(Da Oé) = - ln{l + Z {3 + ﬁ (7 — 34 SiH2 Oé)}} (510)

for the Janus needle. The orientation a corresponding to the lowest free energy for fixed xg
minimizes the right hand sides of Egs. (5.9) and (5.10) at @« = 0 or a = 7. This agrees with the
intuition that the switching points at the surface of a Janus particle, where + and — boundary
conditions meet and where the local energy (¢); attains its maximal surface value, tend to be
as close as possible to the half plane boundary where the local energy <€>ﬁlo is enhanced over
the bulk value.

It is instructive to compare the behavior of the free energy in Egs. (5.9) and (5.10) at large
distances, i.e, xg > R and zg > D, respectively, with the behavior when the Janus particle
nearly touches the boundary of the half plane. This can be done easily for the orientation
a = +7/2 (which is the orientation of maximal free energy), because in this case the region
with + (or —) boundary conditions midway between the switching points faces the half plane
boundary; at close distance it is only this homogeneous region which matters quantitatively.
Thus for the Janus circle and the Janus needle the free energy follows from a Derjaguin formula
for a circle with a homogeneous boundary and from an expression for a strip of finite length D

with homogeneous boundaries, respectively. In the present case this reads

2R
5fwa117O;J(.CC()/R, o = :tﬂ'/2) = TI'AO;‘: N (5.11)
o — R
for the Janus circle with zo/R — 11 and
D
6]:W3‘]]7O;Jn(p, a==+m/2) = Ao,ix— (5.12)
0

for the Janus needle with zo/D — 07. Here Ap 1 = m/24 is the corresponding Casimir ampli-
tude [24]; see also Eq. (1.2) and the last relation in Eq. (5.22) and the remark below it. The
comparison of the large-distance results in Egs. (5.9) and (5.10) with the short-distance ones in
Egs. (5.11) and (5.12) is displayed in the two panels of Fig. 12. For both the Janus circle and
the Janus needle this implies a non-monotonic behavior of the free energy exhibiting a minimum.

Although our results do not allow us to determine the position of these minima quantitatively,
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Figure 12: Distance dependence of the insertion free energy 6.F of a Janus circle (a) and a Janus needle
(b) with fixed orientation a = 7/2 so that it faces with its + segment an ordinary boundary wall of
the embedding right half plane. Combining the (extrapolated) large distance behaviors from Eq. (5.9)
and Eq. (5.10) from SPOE (solid blue line) with the short distance Derjaguin behaviors (Egs. (5.11)
and (5.12)) (dashed red line) strongly suggests a non-monotonic behavior of §F with a minimum at a
distance x of the particle center from the wall of the order of the particle size. The shaded area in (a)
indicates hard core repulsion for 2o < R. Note that §F in (a) and (b) depends on R and D only via the
dimensionless ratios xo/R and xo/D, respectively.

they suggest that at the minima the closest distances between the half plane boundary and the
Janus particles are of the order of their sizes.

We now turn to the stable orientations a = 0 of Janus circles and Janus needles. While in the
circular case F exhibits the same qualitative behavior as for o = /2, i.e., attraction at large
and repulsion at small distances, the perpendicular Janus needle is attracted by the ordinary
wall not only at large but also at small distances. Here the interaction is dominated by the high
energy region around the closer tip of the needle, fitting well to the enhanced disorder at the
ordinary wall while the ordering effects at the two sides of the needle are of minor importance

(see the discussion at the end of Appendix E).

5.1.2 Janus particle interacting with a + boundary

For a = + both s%f ) and sgb) contribute to Eq. (4.2). The explicit expression for the interaction
free energy following from Eqs. (5.5)-(5.8) shows that the free energy attains its minimum at
the orientation o« = 7/2, where the + side of the Janus circle faces the + wall, as expected
intuitively. Now we consider the large-distance dependence for this orientation, which is given
by

3R 3/ R\? R\Y/8 55 [ R\2
0 Fwall,+:3(zo/R, 0 = 7/2) n{ 2%{ 5 \ g _+ - 32 \2g (5.13)

for the Janus circle and

D D?] 45D?
6 Fwall+:0n(Dy a0 = 7/2) = —ln{l - 37 {1 — 91—6 + 27 3/4pI/8 {1 — ‘24 H (5.14)
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for the Janus needle!'?. This should be compared with the short-distance dependences

2R

5fwall,+;J($0/R7 Q= 7T/2) = 7TA++ R (515)
with g — R for the Janus circle and
D
dFwall,+n(D, 0 = 1/2) = A++<L"_o (5.16)

with z9 — 01 for the Janus needle and with the corresponding critical Casimir amplitude
Ay = —m/48 [24].

The interaction of both types of Janus particles with the half plane boundary displays the
same remarkable qualitative features. While being attractive at short distances, the interaction
is repulsive at large distances so that at intermediate distances (not covered by Egs. (5.13)-
(5.16)) the interaction free energy must have a maximum. It would be interesting to determine
the whole distance dependence by means of simulations which on a square Ising lattice should
be easier to carry out for the Janus needle than for the Janus circle.

The asymptotic results for large and short distances (see Egs. (5.13) and (5.14) as well as
(5.15) and (5.16), respectively) are displayed in the two panels of Fig. 13.

15 - - 1.5
As 1
1} ] 1} D
= xT g xT
; 0 G} 1 0
T 05 Ff 7 05
5 5
0 0 f——=
05 S ' ' —0.5 L ' : '
0 2.5 5 7.5 10 0 2.5 5 75 10
£L'0/R 2(1,'0/D
(a) (b)

Figure 13: Same as Fig. 12 except that the universality class of the wall is now +. Thus the Janus
orientation again being fixed at a = /2 is now the equilibrium orientation (i.e., with the lowest 6.F for
any given xzp). Combining the large (Egs. (5.13) and (5.14)) and short (Egs. (5.15) and (5.16)) distance
behaviors suggests a non-monotonic distance dependence of §F with a maximum.

Finally we consider the distance dependences of a Janus circle and a Janus needle which are

forced to a fixed orientation with o = 0 or @ = 7 so that the Janus particle faces the half plane

boundary with its switching point. Here Sg@) and sgﬁ) do not contribute, due to the factor sin

2Tn Egs. (5.13) and (5.14) the contributions from the energy density and from the order parameter are
antagonistic, but the contribution from the energy density dominates. Concerning the order parameter, the half
plane boundary + and the opposing + side of the Janus circle fit together and favor attraction while the increase
of the energy density induced by the Janus circle does not fit to the energy decrease of the half plane boundary

+ and thus favors repulsion.
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in Egs. (5.6) and (5.8). At large distances, the force f, in z direction on the Janus circle and
the Janus needle is given by

R R?
Rfm(wall,—l—;J) = —Ramoéfwall7+;J($0/R, o = 0) = R@xo ln |:1 — 2—$0 (3 — 2—333)} (517)

and

D 7D?
(/D vy = ~(D/20ry Pt n(Dea = 0) = 0p 1= 2 (34T (o)

respectively, while for small distances it is given by

11 o[, (o —3/2
Rf:c(wall,-l—;J) = ﬂﬂ- 2 <E - 1) (519)
wnd 21/32
(D/2) fa(wall,+:m) = D1 _1° (5.20)

respectively. The result in Eq. (5.19) follows upon replacing the critical Casimir amplitude A,
in the corresponding Derjaguin expression for a circle with homogeneous boundary condition a
by (At + A4_)/2 = 117/48. This is plausible and is demonstrated in Appendix E. In order
to derive Eq. (5.20) we have used Egs. (D10) and (D12) in Ref. [41] for a semi-infinite Janus
needle. The expressions for the force at large and at short distances in the case of the Janus
circle (Egs. (5.17) and (5.19), respectively) and in the case of the Janus needle (Egs. (5.18) and
(5.20), respectively) are displayed in the two panels of Fig. 14. They imply a force on the two
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Figure 14: Same as Fig. 13 but with the Janus particles forced to face the wall with their switching
points (i.e., with orientation a = 0). Comparing large (Egs. (5.17) and (5.18)) and small (Egs. (5.19)
and (5.20)) distance results shows that dF is repulsive at all distances. The shaded areas indicate the
hard core repulsion for o < R in (a) and for o < D/2 in (b).

Janus particles which is repulsive at all distances, in agreement with intuition: the increased
energy density near the switching points is incompatible with the reduced energy density near
the + boundary of the half plane. Moreover, for the Janus circle close to the wall, the repulsive

contribution coming from its — segment dominates the attractive one from its 4+ segment.
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5.2 Janus particle in a strip

Here we consider a horizontal strip S of macroscopic length and width W centered at the real
axis in the z-plane as introduced below Eq. (5.2). Its lower and upper boundary lines are
endowed with boundary universality classes a and b, respectively, and the system is denoted as
Sap- Applying the conformal mapping given by Eq. (5.2) to the upper half w-plane together with
using the averages of €, ®, and T in the upper half w-plane H;, (with corresponding boundary
conditions (a,b) for (u = Rew > 0,u < 0)) provided by Ref. [56] implies, via the transformation
formulas in Egs. (2.1) and (2.9), the averages

(e(2,2))5, = (1MW) LS (Y),
(®(2,2))s,, = (m/W)VB DY), (5.21)
(/W2

a

—
~
—
N
~—
~
W
2
S
Il

in the strip. Here Y = wy /W and

150 = (1/2)(eos V)™, 153 =0 e =)
f_(fi_) = 21/8(008 Y)_1/87 f(s (4COSY _ (COS Y)_l)/Q, f-(f)_ _ —21/8((308 Y)_l/s snY |
(% = (tanY)/2, = (2cosY) Y81 —sin V)V, 1D A/, (5.22)

with Ay from Eq. (1.2).
The free energy needed to transfer a Janus particle from the bulk into the strip with the
particle center located at (zg,yo) follows from Eq. (4.2). In the case of a symmetric circular

Janus particle for (s;) in Eq. (4.2) one inserts the sum of the following strip zawerages13
(s)s, = T [3 = T (1/4+2¢%) 3}, | 159 (o) + 0 (7).
<SS@)>Sab _ 213/4'~79/808Y0fal?)( Yo) + <SS¢)>(Sr;i L0 (j5+1/8) : (5.23)
()5, = 1677 (2 = 1) fy, + 0 (7%) |

with J = 7R/W, ¢ = cosa, and Yy = wyo/W, which follow from Eqgs. (3.2)-(3.4). In the case

of the Janus needle one inserts the sum of

€ 3 7 -
<Sf113>§ab :N|:§ +N2 (6—4 — 3—2 )8y0 féb)(Y())—i-O(Ns) ,
(55)5. = 27BN ey, £ (Vo) + (S + O (NP5 (5.24)
e = I (2 1) 1D 0 ()

with V' = 7D /(2W), which follow from Egs. (3.5)-(3.7). Here (s % )>g;1b) are the next-to-leading
contributions to <sgb)> s,, which are of the order of J3+1/® and N3+1/8  respectively, for P = J
and P = Jn.

13For the derivation of Eq. (5.23) we have used the relations 9, = (—in/(2W))dy and 9 = (in/(2W))dy
Similar relations have been used for Eq. (5.24).
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For ab = ++ we have obtained the explicit expressions

1/4
(i) = 53 [16(53t9 -+ 2163)c + (42810 + 81983)c| TH1/8 1) (¥,
(5.25)
N 29/8
(i) = ) [(328t0 + 18913)c + (20t0 + 126¢3)c| N3+1/5 1) (vp) |

for a Janus circle and a Janus needle, respectively. Here t3 = tan Yy, and we have used Egs.
(B.10) and (B.16).
In the subsequent subsections we conclude with observations for the various pairs ab of strip

boundary conditions, mainly concerning the orientation of the Janus particles.

5.2.1 Janus particle in a strip with two ordinary boundaries

If both boundaries belong to the ordinary surface universality class, the strip average (®)s,,,
vanishes and the orientation-dependence of a small Janus circle and of a Janus needle stems in

leading order from

(s))s00 = —[16R2, (9/8)D?]

4;/\)2 cos 2a, (5.26)
for P = [J,Jn]. This implies that the orientation with the lowest free energy, i.e., of maximal
<SS]{?]H>SOO7 is a = £7/2 for which the dipole direction of the Janus particle is parallel to the
strip axis. This is easy to understand intuitively in terms of the best fit between the stress
tensor in the empty strip and the stress tensor induced at large distances around an isolated
Janus particle in the entire plane without the strip.

As discussed between Eqs. (2.18) and (2.19) and at the end of Sec. 2.2.2, for Janus circles and
Janus needles with o = 0 the eigenvector €4 (0,y) has the orientation of the y axis and e_(z,0)
has the orientation of the x axis (see Fig. 6). The Cartesian stress tensor of the horizontal
empty strip with equal boundaries has eigenvectors €, (with positive eigenvalue) and €_ (with
negative eigenvalue) pointing along the = and y axes, respectively (see Egs. (5.21), (5.22), and
(2.8)). It follows that for o = 0 the eigenvector fields associated with the Janus particle and
with the empty strip do not agree. However, rotating the Janus particle to a« = £+7/2, the signs
of the corresponding eigenvalues do agree.

This orientational preference is supported by the next-higher order via the energy term
<SSE)>SOO which also favors o = +m/2. Again this can be understood intuitively: the region with
enhanced energy near the switching points prefers the neighborhood of the ordinary strip edges

with their enhanced energy.

5.2.2 Janus circle in a strip with ++ boundaries

For Yy # 0 the orientation of the small Janus particle with the lowest free energy is determined by

the contribution <s§%)n)g++, predicting o = 0 for Yy < 0 and o = 7 for Yy < 0. As expected, with

these orientations the + half circle of the Janus circle faces that one of the two + strip boundaries,
which is closest. For the center of the Janus circle on the midline of the strip Yy = 0, <55‘,1?])n>

@

vanishes for all a and it is (s JH Jn)Ss+, Which determines the equilibrium orientation. Due to

St+
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fgr) = fg’g) this expression is the same as for the OO strip and the orientation is o = +m/2, as
discussed in the previous subsection. However, ffl = — é% so that this orientational preference

is reduced rather than supported by the next-higher order term which is the energy term.

5.2.3 Janus particle in a strip with +— or +O boundaries

Here the orientation with the lowest free energy is o = 7 for all Y € (—n/2,7/2), because the
leading contribution of <s§c5)n>gab o R%® or o« DY® with ab € {+—, 40} is negative for all Yj.
Thus the + half circle of the small Janus particle always faces the lower + boundary of the strip.

5.3 Janus particle in a wedge

In order to calculate the necessary operator averages in the wedge geometry W as introduced
in Sec. 5, we use the conformal mapping in Eq. (5.3) which relates the accessible region to the

upper half w plane. The wedge is depicted in Fig. 15.

4

\\\-\\\- \\ \\\\-\\\

Figure 15: A wedge with 7/Z = 27/3 (a) and a wedge with 7/Z = 37/2 (b) in the z plane. The latter
corresponds to an acute opening angle of 7/2 at the apex in the inaccessible region (white). We show
the curved rectangular grid which, via Eq. (5.3), corresponds to the grid of straight lines with constant
u and v in the upper half w = u + év plane. The boundary of the wedge (dark blue) corresponds to the
boundary v = 0 and the light blue lines in the interior of the wedge correspond to v > 0. The midline
(depicted in grey) and the green and red lines in the upper and lower half of the wedge correspond to
u =0 and to u < 0 and u > 0, respectively.

We start by discussing the stress tensor in the case of a wedge W, with one edge carrying the
boundary condition a and the other edge exhibiting the boundary condition b. In this case the

transformation formula in Eq. (2.9) and the corresponding half plane expression (T'(w))m,, =

tap/w? yields
ta=2 + (1 — E%) /48

<T(Z)>Wab = 2

; (5.27)
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Here Hy,;, is a generalization of H_, with boundary conditions a and b for v > 0 and u < 0,
respectively; t,, = 0 and t_; = 1/2 (compare Eq. (2.17)). The corresponding Cartesian stress
tensor (Tj;)w,, at a point z = |z| exp(if) has an eigenvector (cos 6, sin #) with an eigenvalue given
by the right hand side of Eq. (5.27) times —z%/(n|z|?). The stress tensor averages reproduce
the special cases of the half plane and the strip.

Next we turn to the profiles of the primary operators O = ® or O = . For simplicity we
consider equal boundary conditions a on both edges of the wedge. Combining the corresponding
expression in Eq. (2.3) for (O(w,w))n, in the half plane with the conformal mapping in Eq.
(5.3), the transformation formula in Eq. (2.1) yields the result

(O(2,2))w,, =AY (ﬁ) . (5.28)

COS

It can be verified that for = = 1 the average in the wedge as given in Eq. (5.28) reduces to the
average in the half plane with uniform boundary conditions of type a. Analogously, the average

in a strip with equal boundary conditions a,

W s T2) ) - : (5.29)

(O(z,2))s,, = Ag) <? cos
is retrieved by taking the limit of acute wedges, i.e., E oo in Eq. (5.28) together with
Re(z) — oo, in which the strip width is identified with W — 7wRe(z)/Z, while the polar angle is
identified with 0 — wIm(z)/(WZ).

5.3.1 Janus particle in an ordinary wedge

If the wedge has ordinary boundaries, which do not break the £ Ising symmetry, one has
(®)w,p =0, so that sgq)) in Eq. (3.3) and SS? in Eq. (3.6) do not contribute to the embedding

free energy in Eq. (4.2) so that the dependence of the interaction on the orientation is dominated

by the operators sgﬂ) and 55]2 yielding, with Eq. (5.27),

_ =2

—

@ _ 2 2
<5P >Woo = [SR 7(9/16)D ]24‘20‘2

cos(2a — 26y) (5.30)

for P = [J, Jn] = [Janus particle, Janus needle] where we have introduced the polar angle 6 of
the point zp = |zp|exp(ify) where the center of the Janus particle is located. The orientation
associated with the minimum of the free energy, i.e., the maximum of (sp)wy,,, depends on
whether the opening angle /= of the wedge is larger or smaller than 7. If the center zy of the
Janus particle is located on the positive real axis, i.e., 8y = 0, this optimal orientation is given
by a = 0 or @ = 7 (i.e., the dipole vector is perpendicular to the real axis) in the case = < 1
(as in Fig. 15(b)), while it is « = 7/2 or « = —x/2 (i.e., the dipole vector is antiparallel or
parallel to the direction of the real axis) in the case = > 1 (as in Fig. 15(a)). As expected, it
is for these orientations that the stress tensor field of an isolated Janus particle “fits best” the

corresponding field of the isolated wedge; see the discussion below Eq. (5.26).
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5.3.2 Janus particle in a + wedge

For a wedge with + boundaries the dependence of the interaction on the orientation is dominated

by the operator sgp) in Egs. (3.3) and (3.6) yielding

|z0| cos(Z6

9/8
R,D/4
<s](;1>)>w++ _ 93/8=1/8 <[7/])> (cos(EQO) sin(a—60p)+Z= cos(a—Ho)sin(EQO)) , (5.31)

for P = [J, Jn], where we have focused the discussion on the leading term and have used Eq.
(5.28) with O = ®. For Z = 1, Eq. (5.31) reduces to the corresponding half plane expressions
in Egs. (5.6) and (5.8) and for = " oo, as described in Sec. 5, it reduces to the corresponding
expressions in Eqs. (5.23) and (5.24) for the strip. Considering for the wedge again the special
case in which the Janus particle is centered on the positive real axis, the right hand side of Eq.
(5.31) becomes proportional to sin« (with a positive proportionality factor), which is maximal
for « = 7/2, i.e., for the dipole vector pointing towards the apex of the wedge at the origin, as

expected intuitively.

6 Quadrupolar particle in a half plane, in a strip, or in a wedge

Here we use Eq. (4.2) together with the SPOE (Eq. (3.1)) and Egs. (3.11)-(3.13) in order
to calculate the free energy expense to embed the quadrupolar particle Q shown in Fig. 1(c)
into the three confined geometries ¢ forming a half plane, a strip, or a wedge. While the

(5)> (@)

corresponding averages (sq’ )y and (s )y follow from (g)¢ and (®)g, as shown in the above

sections on Janus particles, the corresponding averages ()¢ of the three terms in the expression
for sg) (Eq. (3.13)) can be taken from Appendix D.2 in which they are calculated for each of

the three geometries.

6.1 Quadrupole in a half plane

The free energy, which must be invested in order to transfer a quadrupolar particle from the
bulk into the right half z plane ﬁa with boundary condition a = O or a = 4 on its boundary
line z = 0, follows from Eq. (4.2) with its right hand side given by the sum of

(a)
) (D T ) Al 5
<SQE >ﬁa = (g + Z(‘)XO) TO +0 (XO ) N (61)
()
(Pn . _ 1 432( 2 o ) : o Ay —(6+1/8)
(s, = —2/15 (14 0%, ) (sin2003%, e +0(x ) (6.2)
0y _ 31 6
%ﬁa—@%+ﬂ%>’ (6.3)

with Xy = z9/R where x( is the distance of the center of the quadrupole from the boundary.
Here we have used the SPOE in Egs. (3.11)-(3.13), and for Eq. (6.3) the results in Appendix
D.2. For a boundary with a = +, the amplitude A((; ) is positive and the orientation « of

37



the quadrupole, which minimizes the free energy, is given by the minimum of sin 2« for which

H
boundary with one of its + surface segments. For an ordinary boundary a = O of the half plane,

<sgI> )>~+ is maximal. As expected, this yields a = —/4 for which the Janus particle faces the +
for which .AEI? ) vanishes, Eq. (6.2) yields no orientation dependence up to the orders studied.

6.2 Quadrupole in a strip

Here we focus on strips with OO or ++ boundaries. In addition to the corresponding averages
of £ and ® given in Eq. (5.22) one also needs the strip averages (T'T)s,, and (L?,l)s,, which
are derived in Appendix D.2 and are given in Eqgs. (D.20) and (D.21); they are the same for OO
and ++ boundary conditions. The insertion free energy follows from Eq. (4.2) with its right
hand side being the sum of

: 57 .
. = T|5+ 1 1200 +0 (7). (6.0
32 2 )
(s Vs = 2T ST, | sin 2008, 1 (¥0) + 0 (775) L (65)
and 35 1 1 7
@ _ 74 6
(8Q )8aa = T {4_8 {m + %} ~ 135 8 404} +0 (j ) ; (6.6)

with J and Y{ defined below Eq. (5.23).

6.2.1 Ordinary boundaries

In the case aa = OO, for which the scaling function fég)) vanishes (see Egs. (5.21) and (5.22)),
the leading orientation dependence stems from <sg)>gaa. This contribution predicts that the
free energy is minimal for the orientations o = +7/4 for which the square, formed by the
four switching points of the quadrupole, has its edges oriented parallel and perpendicular to
the boundary lines of the strip. An intuitive reasoning, similar to the one given for the Janus
particle in a strip with ordinary boundaries, can be provided. In the empty strip with OO
boundaries the eigenvector parallel to the strip axis has a positive eigenvalue. This should be
compared with the eigenvector field around an isolated quadrupolar particle which has been
discussed in Fig. 10 and between Egs. (2.55) and (2.56). What matters in the comparison
are the eigenvectors of the quadrupole on a line passing through its center and being parallel
to the strip axis, because it is only in this direction where long-distance correlations between
the quadrupole and the strip can build up. For the orientations o = £7/4 of the quadrupole
this line passes through the midpoints of the + and — sections of the quadrupole (compare the
rightmost panel of Fig. 11), and the eigenvector €, (with positive eigenvalue) on this line is
oriented parallel to it, i.e., parallel to the strip axis, which fits the eigenvector of the empty
strip. Conversely, for the orientation v = 0 the line passes through the switching points and the
eigenvector on this line, being oriented parallel to it (and to the strip), is €_ with a negative

eigenvalue (see Fig. 10(c)), which does not fit the eigenvectors of the empty strip.
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6.2.2 Strip with ++4 boundaries

For identical boundaries with symmetry breaking boundary conditions +, the leading orienta-
tional dependence of the free energy is dominated by the order parameter contribution given in
Eq. (6.5):

(@) _ ol/ar1/832 ju7s 1T —cos2¥p
(sq sy =2 9 J 128 (cos Yo 1775 sin 2. (6.7)

For any position in the strip the factor multiplying sin 2« is positive. Therefore, as expected,
the orientation o = 7 /4 (for which the + segments of the quadrupole face the strip boundaries)

minimizes the free energy.
6.3 Orientations of a quadrupole in a wedge

6.3.1 Ordinary boundaries

For a wedge Wpo with two ordinary edges, (®)w,, = 0 and the orientational dependence of

the interaction of the quadrupole with the wedge is dominated by <88)>W, which has the form

4 —4 —9 2 —2
) R 35 = (: —1) 9 49=< 4+ 329
= (2) 12 — (22— 1) 202 os(da— 46p) b . (6.
(sq 1o (|z0|> {48 cos1Z0, 36 ( ) g5 coslda—46) . (68)

This follows from averaging sI) in Eqs. (3.11)-(3.13) with the aid of Eqgs. (D.22) and (D.24).
Here 6y is the angle introduced below Eq. (5.30). Thus, following from Eq. (4.2), the orientations
a of the quadrupole, associated with the lowest free energy and corresponding to the maximum
of (sMYyy,,, are a — Oy € {£m/4, 431 /4} for a wedge with opening angle 7/= smaller than
and o — 6y € {0,+7/2, 7} for an opening angle larger than 7. These conclusions again agree
with the “best fit” scenario between the stress tensor fields of the isolated quadrupole and the

empty wedge.
6.3.2 + boundaries
Here the orientational dependence of the interaction of the quadrupole with a wedge is dominated

by (s(®))w which in leading order is given by

e2i(°‘+”/4)8§0 (®(20, 20))w,, +ccf. (6.9)

> 16
<5§;3 )>W++ _ 29/431%17/8

In the special case that the quadrupole is centered on the positive real axis, i.e., zg = Zy = x,

the mean value in Eq. (6.9) reduces to
=1/8 RA\L7/8
() _ = =2 _ :
<SQ >W++ = W (x—o) ( = 17) sin 2¢v . (610)
The quadrupole orientations a with the lowest free energy, which are determined by the maxi-

mum of <SSI>)>W++, are given by a € {—n/4,3m/4} (i.e., the + segments of the quadrupole are

perpendicular to the real axis) for large opening angles of the wedge with Z~! > {/8/17 so that
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Eq. (6.10) is negative. For small angles 2~! < /8/17, which render Eq. (6.10) positive, they
are given by o € {m/4,—37n/4} (i.e., the + segments are parallel to the real axis). The marginal
case corresponds to the critical angle 71/8/17 ~ 123.5°. This agrees with the expectation that

the 4+ segments are as close as possible to the 4+ boundaries of the wedge.

7 Interaction between two particles

The interaction between two small particles follows from Eq. (4.3). More generally, the free
energy cost 6.Fp,...p, to transfer n small colloids Py, ..., P,, each of them codified by a SPOE of
the type given in Eq. (3.1), from infinite mutual distances to their actual positions 1, ..., x,

of their centers in the bulk, is given by [44]

5]:P1,...,Pn = —ln< H(l +8pj($j,aj))> N (7.1)
j=1

where «; denotes the orientation of particle P; and the angular brackets without subscript
denote as usual an average in the unperturbed bulk. Due to the multi-point correlation functions
appearing on the right hand side of Eq. (7.1), the critical system induces many-body interactions
between the particles. Discussing them is interesting but beyond the scope of the present study.
Upon increasing all mutual distances |&; — x| between the particles, all correlations but the
two-point ones of the leading operators can be neglected and the interaction reduces to a sum
of two-body terms'.

Here we focus on the interaction between two particles P1 and Py for which their SPOEs in

Eq. (3.1) yield the expression
e Purs = L (spysp,) = 1+ (555)5)) + (o5, s ) + (50, 5p.) (72)

because the descendants of ¢, ®, and I are “orthogonal in the bulk”. We recall that a bulk
two-point correlation function of primary operators vanishes unless they have the same scaling
dimension. Accordingly, the correlation function of descendant operators belonging to different
conformal families also vanishes [58]. In the following we shall address three representative
cases: two circular Janus particles; a Janus circle or a Janus needle and an ordinary needle;

and two quadrupoles. Besides the interaction at large interparticle distances given by Eq. (7.2)

1A simple interesting example is the three-body interaction arising between two circular Janus particles J;
and J2, and a circular particle C with a homogeneous ordinary boundary, all three of them with the same radius
R. Since (e1e2e3) vanishes, the leading three-body term in 6Fj, 5,,c for R — 0 is of the order R34 and arises
from —(sf)sg?sd where sc¢ — Re(zs) is the leading operator contribution for the ordinary circle. This term
with its dependence on x12, €13, €23 and a1, a2 can be determined by appropriate differentiations of the bulk
three-point correlation function (®;®se3) = —(1/2)|212]>/*|@13| 7 |@23|~*. This should be compared with the
two-body terms o (e1€2), (€1€3), (€2¢€3), and (0P10P2) stemming from the energy monopole-monopole and spin
dipole-dipole channels, which are of the order R? and Rt/ 4 respectively, and dominate for R — 0. Three-body
interactions between two small Janus particles and a large particle, such as the boundary of a half plane, can
also be determined by the SPOE approach. Here one has to suitably differentiate the two-point order parameter

correlation function in the half plane.
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with the three averages on the right hand side to be calculated from the explicit expressions for
the quantities sp in Sec. 3, we shall, for certain cases, also consider the interaction if the two
particles nearly touch each other.

Without losing information we position the two particles P; and Py with their centers at

z1 = —r/2 and z2 = r/2 on the negative and positive real axis, respectively.

7.1 Two Janus circles

Consider two circular Janus particles P1 = J; and Py = J9 with equal radii R and with their
orientations rotated away from the standard orientation (see Fig. 1) by the angles a; and «o,

as illustrated in Fig. 16.

Figure 16: Two identical Janus particles with radii R and center-to-center distance r. As
explained in Fig. 11, the orientations a; with j = 1,2 are measured relative to the reference
configuration @ = 0 shown in Fig. 1 (a). Here, the angle oy is positive while the angle aq is

negative.

For large separations, i.e., a small size over distance ratio R/r, the averages on the right hand
side of the expression in Eq. (7.2) for the interaction free energy 6.Fj,.;, are determined by Egs.
(3.2)-(3.4) and give rise to the following expansions, which include powers up to (R/r)*+1/4:

r

2 2
(sgi)sgz)> =3 (R) {3 +2 <§) [—5 + 4(cos 2aq + cos 2a2)}} ,

4 -2 (B oo+ () o s}, 03

r r
R 4
(s((]]ll)sgﬂb =32 (?) cos(20 + 2a2) ,
where

o (a1, ) = 9cos(ag + ag) — cos(a — az),
PB(a1,az) = 25cos [2(&1 + 042)} cos [al — 042] — Cos [al + ag} cos [2(041 — ag)] , (7.4)
C (0, 00) = —1Tcos(a + ag) + 9cos(a; — ag) .

0Fj,.35(r/R; a1, a2) is invariant under the transformations (o, az) — (o + 7, a2 + 7) and

(a1, 9) — (2,0aq). These invariances hold to any order in /R, because the first of these
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transformations, i.e., rotating each of the two circular Janus particles about their center by 180
degrees, amounts to exchanging the 4+ and the — boundary conditions in all boundary pieces
of the Janus circles. Due to the + <> — symmetry of the Ising model this transformation does
not change the partition sum and thus the free energy. Combining the first transformation with
an overall rotation of the system by 180 degrees yields the second transformation, obviously
without changing the free energy.

In Ref. [57] the effective interaction of two Janus particles has been obtained by simulations
on a square lattice. The Janus particles have been treated as pieces of material, each composed of
neighboring elementary squares, thereby approximating a circular particle shape with piecewise
straight Janus boundaries. We provide analytical results for the five special configurations

considered in Ref. [57] which in our notation correspond to (aq, ) equal to
(w/2,7/2) [},  (0,m) O],  («/2,0) [},  (x/2,—7/2) [IV],  (0,0) [V]  (7.5)
(see Fig. 17).

00 00000000

Figure 17: Five special angular configurations of two Janus particles.

As in Secs. 5 and 6 we augment, for these configurations, our large distance results in Eqgs.
(7.3) and (7.4), which are inserted into Eq. (7.2), by the short distance Derjaguin-like results:

79,
0F 31,32 (T/RQ oq(j),ozg(j)) =—7 (7.6)
\Jr/R —2
with j € {I,...,V} and
Al +A__
%7 QIV = 9\/ = A++7 (77)

which become asymptotically exact for nearly touching Janus particles, i.e., for r/R — 27 as

D =% =04, P =

discussed in Appendix E. Concerning the values of the well-known [24] critical Casimir ampli-
tudes Ay see Eq. (1.2). In Fig. 18 we compare our analytical predictions at large and small
distances with the corresponding simulation results from Ref. [57].

The theoretical predictions and the numerical results from Ref. [57] agree on a qualitative
level for large separations. Concerning the proximal regime, our findings of repulsion in the
cases I and II and of attraction in the cases IV and V are consistent with the numerical data.
In case III the present large distance behavior agrees rather well with the simulations. However,
the repulsion at short distances is not visible in the numerical data, presumably because this
small scale of separations is not sufficiently resolved. We cannot expect quantitative agreement,
because our predictions are valid for the universal scaling region where the size of the particles
and the distances between them are large on the scale of the lattice constant. Within the

simulation model, these requirements are not met by the particle size of 4 lattice constants.
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Figure 18: The free energy of interaction (per kpT.) for two circular Janus colloids for the five
orientations shown in Fig. 17. The analytical results from Eq. (7.3) for the interaction energy
at large distances, 0Fy,;(r/R; 1, a2), as a function of the rescaled separation r/R for various
relative alignments, are illustrated by solid lines. The leading short-distance asymptotic results
in Eq. (7.6) are shown as dotted and dashed lines with the same color used for large separations.
The dashed and dotted lines for I and II as well as those for IV and V de facto coincide (see
Eq. (7.7)). The symbols correspond to simulation data extracted from Fig. 7(b) in Ref. [57].
The color code of the symbols corresponds to that of the lines. The shaded region corresponds

to hard core repulsion.
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7.2 Two Janus needles

The interaction potential at large distances between two Janus needles P; = Jn; and Py = Jng

of equal length D (see Fig. 19) follows from the interaction between the Janus circles studied

Figure 19: Two identical Janus needles with length D and center-to-center distance r. A nonzero
needle thickness has been introduced for reasons of clarity. The orientations «o; with j = 1,2

are measured relative to the reference directions, as described in Fig. 16

in Subsection 7.1 upon replacing Eq. (7.3) by
) (), (D 2(9 3 /D\?
(8T 5Tm0) = 3 1 + 6\, {—10 + 17(cos 2aq + cos 20@)} ,

?) (@ _ D\ 9 /D\?
<Sgnzsgni> =92 3/4 (Z) {JZ{(OQ,OZQ) + 6_4 (Z) 3%(0&1, 012) + %(al, ag) , (78)

81 /D\*
<35218322> =3 <§) cos(2aq + 2a) .

In Fig. 20 we plot the interaction potential between two Janus needles for various orienta-

tions.
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Figure 20: Large distance behavior of the interaction energy 0Fj,.jn between two Janus needles
(per kpT.) as function of the rescaled separation 2r/D. The shaded region corresponds to hard

core repulsion of the needles in the tip-to-tip configuration.

7.3 Homogeneous needle interacting with a Janus circle or with a Janus
needle

The interaction potential at large distances between the needle P; = N with a homogeneous

ordinary boundary and the Janus circle Po = J as shown in Fig. 21 follows from

Figure 21: Configuration of an ordinary needle N of length Dy and a symmetric Janus circle of
radius R with center-to-center distance r. The orientations oy and «j are measured relative to

the reference directions, as described in Fig. 16.

<S§)SSE)> _ RDy {3 +§ (Dlj,/2)2 [1 —|—3COS(204N)} + (§)2 [—5 —|—8COS(2C¥J)}} ,

4r?
RDx\?
0 = (Gar) cosl2(an +ay)]. (7.9)
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The corresponding interaction between the above homogeneous ordinary needle P; = N of length

Dy and a Janus needle Po = Jn of length D is obtained from

(5950 = DxD {3+ i (5)2} (5 4 17 cos(20)] + % (DN)Q} 1 +3cos(2aN)]}

1672 2 (7.10)
9 /DnD\? |
050 = g5 (o) cos G+ 2000

Equations (7.9) and (7.10) apply to the first and third average on the right hand side of Eq.
(7.2) while therein the second average vanishes. Here the expressions in Egs. (3.19) and (3.20)
for sgi) and 8312, respectively, as well as 81(\1(1)) = 0 have been used.

The interaction free energy for the pair (N, J) = (homogeneous ordinary needle, Janus circle)

is shown in Fig. 22.

0.25 —rt 1 r v r t 1 Tt ft T Tt T T T Tt T T T T T T T
0

2 I 77 R
3 i — —
_025 B _i @ H
: —  —e|
I — | e
-
_05 IR TR NN R TR SRR SN [N SN SO TN TR NN A TN SN S [N SO MO S T RN N

2 4 6 8 10

r/R

Figure 22: Large distance behavior of the free energy of interaction (per kpT.) between a
homogeneous ordinary needle of length Dy and a symmetric Janus circle of radius R. The
curves correspond to Dy /R = 2 (the symbols in the inset legend are not drawn to scale) and
provide the large-separation result in Eq. (7.9). The shaded region corresponds to the hard core
repulsion between the needle and the Janus circle if ay = 0, in this case corresponding to the

center-to-center distance equal to 2R.

46



7.4 Two quadrupoles

Finally, we consider the interaction 6.Fq,.q, between the two quadrupolar particles P; = Q; and

Py = Q, of equal size, as shown in Fig. 23.

Figure 23: Two identical quadrupolar particles with radii R and center-to-center distance r.
The orientations a; with j = 1,2 are measured relative to the reference directions, as described
in Fig. 16.

For large separations, exp(—d.Fq,;q,) is also given by the right hand side of Eq. (7.2) with

o = 3G 5 G o),

9 \r 3
(@) (@), _  o3/2]425 Ry 17/4 6+1/4
(8q, 8q,) = —2 / {T cos(2aq 4 2a2) — cos(2a; — 20@)} (?) —I—O((R/T) +1/ ) ’
(sh) sy = O((R/)?), (7.11)

which follows from Eqgs. (3.11)-(3.13). Orientations, which correspond to free energy minima,
are those with like segments facing each other.

Due to the invariance of the Ising model under the exchange of + and — configurations,
the interaction free energy 6.Fq,;q,(r/R; a1, az2) is invariant with respect to the transformation
(a1, ) = (o +m/4, g +7/4). Moreover it is periodic with period 7 in o and in ag separately,
because a quadrupole remains invariant upon changing its orientation o +— a + 7.

In order to present the interaction, we focus on those special orientations for which (a, ag)

is equal to
(0,0) [VT], (0,7/2) [VIT], (—=m/4,m/4) [VIII], (—m/4,—m/4) [IX], (7.12)

which are shown in Fig. 24. For these the asymptotic behavior of 6Fq, ¢, at short distances
is given by the right hand side of Eq. (7.6) with j € {VI,... ,IX}, Zy1 = Py = A4+—, and
i = Drx = Aq 4.

In Fig. 25 we present the theoretical predictions given above for both the short and the
large separation regime. As one can infer from Fig. 25, the theoretical results are in qualitative

agreement with the numerical data from Ref. [57].
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Figure 24: Four special angular configurations of quadrupolar particles.

1 T I ‘I T T T
I T IRTR i. ® (VI) ]
T R . @ (VID |]
0.5 — @ @ (VI
9 [ — 9 0 (IX)
“? 0 j ............................... AAA ..... - L g W
'S [
—0.5 | ]
-1 [, P T T S S T
0 15 20

Figure 25: The free energy of interaction (per kp7:) for two quadrupoles with the special
orientations shown in Fig. 24. The analytical result in Eq. (7.2) with Eq. (7.11) for the
interaction energy 0Fq.q(r/R; o1, o) at large distances is shown as full curves (green and blue,
VIII and IX, respectively) and as dotted curves (black and red, VI and VII, respectively). The
black triangles and the red squares indicate the numerical data extracted from Fig. 8(b) of
Ref. [57], corresponding, respectively, to the configurations VI and VII in Fig. 24. The leading
asymptotic short-distance result (Eq. (7.6)) for the configuration VII is indicated by a dashed
red line. The short-distance result in Eq. (7.6) for the configuration VI is not visible, because
already for /R = 5 the Derjaguin formula in Eq. (7.6) gives 0Fq.q =~ 2.7. The results at large
distances corresponding to the configurations VIII (full green) and IX (full blue) fall almost on
top of the results for the configurations VI (dotted black) and VII (dotted red), respectively.

The shaded region corresponds to the hard core repulsion between the two circular particles.
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Evidently, a quantitative agreement between the presently available numerical data and our
theoretical results cannot be expected (see the remarks at the end of Subsec. 7.1). In any case,
accurate analyses of the tails (r > R) are needed to facilitate a meaningful comparison with our

predictions concerning the behaviors at large distances.

8 Summary and concluding remarks

Critical fluids, such as binary liquid mixtures near their critical point of demixing, induce effec-
tive interactions between suspended mesoscopic particles which are of long range and of universal
character. Here, we have considered particles with chemically inhomogeneous surfaces suspended
in a two-dimensional critical fluid belonging to the Ising universality class. Motivated by the
ability to fabricate “patchy colloids” [63, 64, 65, 66], we have studied planar particles with one-
dimensional surfaces which consist of consecutive segments with alternating preferences for one
or the other component of the binary liquid mixture. In the language of magnetism such surfaces
carry infinitely strong surface magnetic fields the direction of which alternate between the spin
up (+) and the spin down (—) direction, known as “normal” boundary conditions + and — (see,
e.g., Ref. [22]). We have studied in detail the simple representatives of such kind of particles as
shown in Figs. 1(a) - 1(d). We denote them as a (symmetric) Janus circle, a generalized Janus
circle, a circular quadrupole, and a Janus needle. If perturbations (such as confining walls or
other particles) are absent, the dipolar and quadrupolar symmetries of the boundary conditions
introduced in Figs. 1(a), 1(d), and 1(c), respectively, are reflected in corresponding symmetries
of the profiles of the order parameter (i.e., the magnetization in the Ising model), see Fig. 4(a)
and Fig. 8(b).

We consider the above systems right at their bulk critical point where they are invariant
not only under scale transformations, but also under conformal or angle-preserving coordinate
transformations. This enables us to obtain the averages and multi-point correlation functions of
the densities ¢, ®, and T of the energy, the order parameter, and the stress tensor, respectively,
in the presence of a single particle with an inhomogeneous surface in the entire bulk plane. This
is accomplished via conformal transformations from the corresponding quantities in the upper
half plane with inhomogeneous boundary conditions on the real axis, which Burkhardt, Guim,
and Xue have derived in Refs. [55, 56, 42]. These are exact results valid in the whole upper half
plane and, correspondingly, in the entire plane outside the particle, which is a simply connected
region.

As explained in the Introduction, at present there are no similar results available for a double-
or multiply- connected region with an inhomogeneous boundary. This precludes access to exact
results valid at all distances of the interaction of the particles shown in Fig. 1 with each other or
with a confinement. However, by using the small particle operator expansion (SPOE) [44, 52],
asymptotically exact results can be obtained for the interaction of the aforementioned particles
with distant objects, while for a close object — depending on the geometry of the region of close

approach — other asymptotic methods (such as the Derjaguin approximation) are available.
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Using these approaches we have investigated the dependence on particle positions and ori-

entations of the cost of free energy to transfer Janus circles, needles, as well as quadrupoles

from the bulk into a half plane, a strip, or a wedge. We have also determined the free energy

of interaction between two of these particles in bulk. Moreover, we have considered the case

that these particles interact with a needle, the two sides of which belong to the ordinary surface

universality class.

In the following we provide a summary of our main results.

(i)

One-point correlation functions. In Secs. 2.1-2.4 we have determined the profiles (i.e.,
the one-point correlation functions) of the densities e, ®, and T of the energy, the order
parameter, and the stress tensor, respectively, around each of the particles shown in Fig.
1 for the entire bulk plane. For the circular particles of Figs. 1(a), 1(b), and Fig. 1(c)
these are shown in Figs. 4-10. The + and — segments on the particle surfaces induce local
order, leading in their surrounding to positive and negative values of (®)p,article (compare
Fig. 4 and Fig. 8(b)) and to negative values of (€)particle. However, the switching points
at the particle surface induce disorder in their surrounding, clearly visible via the large
positive values of (€)particle there (Fig. 5 and Fig. 9). At large distances from the particle,
(€)particle is also positive for all particles in Fig. 1, except for the generalized Janus particle
with |x| > 7/3, i.e., if one of the two segments + or — extends over less than 60 degrees.
For most of the particles studied, the behavior of the eigenvalues and eigenvectors of
the averages (Th)particle Of the Cartesian stress tensor as introduced in Eq. (2.8), are
shown in Figs. 6, 7, and 10. The eigenvalues of the stress tensor turn out to be finite
on the homogeneous patches of the particle boundary, while they diverge at the switching
points. Still on the particle boundary, but away from the switching points, the eigenvector
belonging to the positive eigenvalue turns out to be orthogonal to the boundary, while
the eigenvector belonging to the negative eigenvalue is tangential to it. This behavior
along the homogeneous sectors of the particle boundary applies to all particles studied
here, i.e., to the ones in Fig. 1 and to the needle with a homogeneous boundary. The
boundary of the upper half w plane with switching points also displays this behavior (see
Refs. [41, 55, 56]).

Results for certain two-point correlation functions at large distance from a solitary particle
in the bulk are derived in the Appendices B and D. In the corresponding discussion of the
energy-energy two-point correlation function in the presence of a quadrupolar particle and
its SPOE in Appendix D, we identify, as a byproduct, the dimension 4 operators in the
operator product expansion (OPE) (Eq. D.25) of two energy densities in the bulk.

Small particle operator expansion. In Sec. 3 we have established SPOEs for each of the
particles shown in Fig. 1. These are series of operators with increasing scaling dimensions.
Their prefactors can be determined and the SPOE can be checked, because it must re-
produce all aforementioned one- and multi-point correlation functions in the presence of a

single particle at large distances from that particle. While the prefactors of low-dimensional
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(iii)

operators follow already from the one-point correlation functions (i.e., profiles) in Secs 2.1-
2.4, knowledge of two-point correlation functions is necessary in order to disentangle (see
Appendices B and D) the multitude of operators for a given high scaling dimension. The
operators appear in three groups, corresponding to the three primary operators ¢, ®, I of
the Ising model and to descendants thereof. Each of the operators has to be consistent
with the underlying symmetries of the particle. Due to the dipole symmetry of the sym-
metric Janus circle and of the Janus needle in Figs. 1(a) and 1(d), a multi-point correlation
function of € and @, in the presence of the Janus particle, keeps its value or merely changes
its sign when all its arguments are mirror reflected about the center of the Janus particle
according to (z,Z) — (—z,—z) — depending on whether it contains an even or an odd
number of factors of the order parameter ®. The same even or odd invariance holds for
multi-point correlation functions in the presence of the quadrupolar particle in Fig. 1(c)
when all their arguments are rotated by 90 degrees according to (z,z) — (iz, —iz). The
operators in the SPOEs in Eqs. (3.2)-(3.4), (3.5)-(3.7), and (3.11)-(3.13) reproduce these
symmetries. It is instructive to compare the examples in Eqgs. (B.1) and (B.2) for the

Janus particles with Egs. (D.2)-(D.4) for the quadrupolar particle.

Interactions at close distances. In Refs. [44, 51] it was shown that right at the critical
point the Derjaguin approximation for the interaction between two close spheres with
homogeneous boundary conditions becomes exact. Here we have considered the interaction
between close particles in two dimensions with inhomogeneous surfaces such as the Janus

and the quadrupolar particles.

(ilia) In Appendix E we have considered two Janus circles I and II with (ag, agr) = (0,0)
or (0,7), i.e., with their switching points facing each other, and a Janus circle (with
a = 0) facing with its switching point a vertical + wall. We have mapped the two-
circle geometry of the two Janus particles, with the closest surface-to-surface distance
C being much smaller than their radius R, onto an annulus which is thin and which
near the switching points of the boundary condition resembles a strip with corre-
sponding inhomogeneous boundary conditions. Determining the position-dependent
disjoining pressure of the latter has allowed us to calculate the force between the
close circular particles in leading and next-to-leading order. We have found that in
leading order the force is given by a Derjaguin expression, which looks like being
stitched together (i.e., the arithmetic mean of two Derjaguin expressions correspond-
ing to the pairs of boundary conditions on the two sides of the switches; compare the
remark below Eq. (5.20)). While this corresponds to a step-like spatial dependence
of the disjoining pressure, for the next-to-leading order force contribution the actual
smooth dependence of the pressure has to be taken into account. The explicit result
for this contribution is, by the order (C/R)Y?, smaller than the leading one. We
have also explicitly calculated the next-to-leading contribution for two circles with

homogeneous boundary conditions and have found it to be smaller by the same order
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(iv)

(iv a)

(iv b)

than the leading (Derjaguin) contribution.

(iiib) A Janus needle of length D in a half plane and oriented perpendicular to the boundary,
as considered in Eq. (5.20), can be replaced by a semi-infinite Janus needle if the
distance of the close end from the boundary is much smaller than D. This reduces
the geometry to a simply connected one for which the force has been calculated in
Eq. (D12) of Ref. [41] in the case of the + boundary.

Janus and quadrupolar particles in confinement. Transferring one of these particles from
the bulk into a confinement, at large distances from the confining walls the cost of free
energy 0F is basically given by the confinement averages of the SPOE operators (see Eq.
(4.2)). In Secs. 5 and 6 we have applied this for the insertion into a half plane, a strip,
and a wedge, with various boundary conditions. For a Janus particle in the half plane,
in Subsec. 5.1 we have compared the corresponding behavior at large distances with that
at small distances from the boundary. In many cases the qualitative dependence of the
free energy 0F of insertion on the position and the orientation of the particle can be
obtained by considering the “degree of fitting”, i.e., to which extent the properties around
the particle in the bulk (such as the distribution of order and disorder represented by
the profiles (®)particle and (€)particle, respectively) fit to the corresponding properties of
the confinement without the particle. For good or bad fitting at a given position and
orientation, .F is low or high, respectively. For example, a Janus particle in the right half
plane with its center at a given distance from an ”ordinary” vertical half plane boundary
exhibits the lowest §F for the orientation @ = 0 for which the disorder regions of the
boundary and the switching points are as close as possible. Likewise, for a + boundary
the orientation of the Janus particle with the lowest free energy is the one with o = 7/2
where the 4+ segment of the Janus particle is as close as possible to the boundary, because

both induce order.

The results in Subsec. 5.1 for inserting a Janus particle into the half plane at large and
at small distances from the boundary imply, in some cases, an interesting non-monotonic
dependence of §F on distance (see Figs. 12 and 13). For Janus particles interacting with a
+ boundary, in Fig. 13 there are conflicting repulsion-attraction tendencies from the energy
density and the order parameter at large distances. Therefore, in this case, our quantitative
SPOE approach is indispensable in order to be able to decide in favor of repulsion at large
distances, while at small distances the Derjaguin-type approach described in (iii) predicts
attraction so that the insertion free energy 6F must have a maximum in between which,

however, might be rather flat.

Inserting a small Janus particle into a strip or wedge, besides the energy and the order
parameter profiles, the profile of the stress tensor (T')p is also nonvanishing and has to
be taken into account (see Subsecs. 5.2-5.3). For a strip with two ordinary boundaries it
yields, via the SPOEs in Eqs. (3.2)-(3.4) and (3.5)-(3.7), even the leading dependence on
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(iv ¢)

orientation (see Eq. (5.26)) predicting the lowest free energy to occur for o = +7/2 for
which the dipole vector is parallel to the strip. This can be understood qualitatively from
a best fit between the stress tensor profiles of the isolated Janus particle and the empty
strip. In Subsecs. 5.2-5.3 we have also discussed the orientation dependence of §F for
inserting a Janus particle into strips with other boundary conditions and into a wedge;
we have checked the validity of our results for a general opening angle of the wedge if the

wedge reduces to the right half plane and the horizontal strip.

In Sec. 6 we have investigated the orientation dependence of §F for inserting a small
quadrupolar particle into a half plane, a strip, and a wedge with various boundary condi-
tions by using the SPOE in Egs. (3.11)-(3.13). Besides the energy density operator and
its derivatives and the quadrupolar descendant of the order parameter operator, d.F con-
tains the combination s of fourth order descendants of the identity. Similar to the stress
tensor in Eqs. (3.4) and (3.7) for the Janus particles, the combination s in Eq. (3.13)
for the quadrupolar particle contains anisotropic operators with nonvanishing profiles in
strips and wedges and determines the leading orientation dependence of the quadrupolar
particle if all boundaries are ordinary ones. Concerning the wedge in Fig. 15, with both
boundaries being ordinary and with both boundaries being 4, we have determined how
0F depends on the orientation of the quadrupole and we have determined the orientations
with lowest dF (see below Eqgs. (6.8) and (6.9), respectively). These latter orientations
depend on the opening angle 7/=Z of the wedge and can be understood most easily for a
quadrupole centered on the symmetry axis of the wedge (i.e., the real axis). In the case of
an OO wedge these are the orientations for which the two + segments of the quadrupole
are either parallel or perpendicular to the real axis (equal to the equilibrium orientations
in the horizontal strip) if 7/ < w. For w/Z > m the equilibrium orientations are ro-
tated by 45 degrees. In the case of a +4 wedge the equilibrium orientations change at an
opening angle 0.6867 of the wedge. For smaller opening angles the two 4+ segments of the
quadrupole are parallel to the real axis, as for the strip, while for larger opening angles

they are perpendicular to the real axis, as for the right half plane.

Interaction between two small particles. The SPOEs in Egs. (3.2)-(3.4) and (3.11)-(3.13)
can also be used to determine the interaction between two (or more) particles which are
much smaller than the interparticle distances (compare Eq. (4.2)). In Sec. 7 we have
presented such results for two Janus circles, two Janus needles, two quadrupolar particles,
and a Janus circle or Janus needle interacting with a needle where both sides induce
disorder (i.e., ordinary boundary conditions). Finally our results for two distant Janus
circles, together with the results obtained within the Derjaguin approximation when the

Janus circles are close to each other, have been compared with the simulation results in
Ref. [57].

These simulations were based on the Ising model on a square-lattice with embedded pieces

of material, each of which is composed of neighboring elementary squares intended to
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approximate a particle of circular shape. Suitable couplings of the elementary squares
of such a patch of material to the Ising spins generate the character of a circular Janus
particle. We expect that this model enters the universal scaling region described by our
theory, provided the size of the patch and the distances between such patches are large
on the scale of the lattice constant. For patches with a diameter of 4 lattice constants, as
used in the simulations, one can expect qualitative agreement at best. We expect that it
is easier to find agreement between our continuum theory and lattice simulations in the

case of Janus needles.
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Appendix A Glossary and list of symbols

In order to make the reading of the manuscript easier, here we summarize the mathematical
symbols and abbreviations used throughout the main text of this work. Certain extra symbols

used only in the Appendices are not listed here.

Mathematical symbols and acronyms

BCFT boundary conformal field theory

CCF critical Casimir force

CFT conformal field theory

OPE operator product expansion

SPOE small particle operator expansion
0=0,,0=0; complex derivatives

P e {J,Jn,J,Q,N} particle label: J for Janus particle, Jn for Janus needle, J, for

generalized Janus particle, Q for quadrupolar particle and N for

needle.

Greek
ap orientation angle of a particle with label P; ap = 0 corresponds to
Fig. 1; see Sec. 3
oF excess free energy in units of kg7 required to transfer a particle
from the bulk to the configuration of interest; see Egs. (4.2) and
(4.3)
0FP, Py Casimir free energy in units of kg7 between two particles with
labels P; and Pg; see Eq. (7.2)
0Fp,,. Py Casimir free energy in units of kg7 between N particles with labels
Py,...,Pn; see Eq. (7.1)
0Fq—wal,p excess free energy in units of kg7 of a particle labelled by P in the
half-plane domain with uniform boundary conditions a along the
boundary; see Sec. 5.1.
OHp Hamiltonian in units of kg7 defining the local Boltzmann weight
for the particle with label P; see Eq. (3.1)
A Laplacian operator in two dimensions: A = 92 + 85 = 40,05
Ay universal amplitude for the CCF in a strip with boundary conditions
a and b; Ay = O4p(0) in d = 2; see Egs. (1.1) and (1.2)
€ energy density operator
0 argument of the complex number z = z + iy, i.e., z = |z]e
Ow scaling function for the CCF between parallel plates with boundary

conditions a and b; see Eq. (1.1).

58



Greek (continued)

Ap eigenvalue of the complex stress tensor corresponding to the particle
labelled by P; see Egs. (2.21), (2.41), and (2.58)

¢  bulk correlation length; see Eq. (1.1)

= parameter defining the wedge opening angle as 7/=; see Eq. (5.3)
and Fig. 15

® order parameter operator

¥ conformal operator, not necessarily primary

X characteristic angle of the generalized Janus particle; see Fig. 1(b)
and Eq. (2.35)

Latin
A prefactor of the operator L_3® in Appendix B (see Eq. (B.10));
complex position variable in the annulus geometry of Appendix E
a label for boundary conditions, a € {4, —, O}; e.g., Eq. (1.1)
A annulus of Appendix E

Aggi ), Ag) ) universal amplitudes of one-point correlation functions of the op-
erator O in the upper half-plane with fixed (+) and ordinary (O)
boundary conditions, respectively; see Eqs. (2.3) and (2.5)

B prefactor of the operator L3 ;® in Appendix B; see Eq. (B.10)
b label for boundary conditions, b € {4, —, O}; e.g., Eq. (1.1)
C prefactor of the operator L? ;L_1® in Appendix B; see Eq. (B.10)
c=cosa shorthand notation used in Eq. (5.23)
d spatial dimension; see Eq. (1.1)
D needle length; see Fig. 1(d)
D = D/(2z9) dimensionless ratio; see Eq. (5.8)
D; linear combination of critical Casimir amplitudes A, corresponding
to the configuration with label j € {I,1I,..., VII}; see Eq. (7.6)
CE unit eigenvector corresponding to the positive/negative eigenvalue
of T'(z); see, e.g., Eq. (2.22)
fa critical Casimir force in z-direction, in units of kpT,; see Egs. (5.19)
and (5.20)
Fu disjoining CCF per area and kT between two parallel walls with

uniform boundary conditions a and b; see Eq. (1.1)
¢ generic confining geometry; see Eq. (4.2)
J =7mR/W  dimensionless parameter introduced in Eq. (5.23)
H, the upper half plane with uniform boundary conditions of type a

along its boundary; see for instance Eq. (2.3)
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Latin (continued)

T(z)
T(2)

Tkl($7y), k7l € {CC,y}

Tor (SL’, y)
tab
w=u+ 1w
w
W

the right half plane with uniform boundary conditions of type a
along its boundary; see Eq. (5.1)

the upper half plane with inhomogeneous boundary conditions +/—
merging at the origin; see Eqgs. (2.13) and (2.14)

upper half plane with three +/— switches; image of the quadrupole;
see Egs. (2.44) and (2.45)

identity operator

Virasoro generators; see Eq. (3.15)

dimensionless parameter introduced in Eq. (5.24)

primary operator in the complex plane with coordinates (z, 2)
statistical average of O in the bulk

statistical average of O in the domain H, with coordinates (w,w);
see Eq. (2.3)

pattern of + and — segments on the u axis (i.e., the boundary of
the upper half w plane), see Sec. 2

two-dimensional vector with Cartesian coordinates x, y

operator series in the SPOE of a particle labelled by P; see Eq.
(3.1)

operator O and descendants thereof appearing in the SPOE of a
particle labelled by P; e.g., SSE), see Eq. (3.1)

radius of the circular particles shown in Figs. 1(a)-(c)

Schwarzian derivative; see Eq. (2.9)

strip geometry with boundary conditions a and b along the edges;
see Sec. 5

holomorphic part of the complex stress tensor operator
anti-holomorphic part of the complex stress tensor operator
Cartesian components of the stress tensor in the Euclidean (z,y)-
plane; see Eq. (2.8)

radial component of the stress tensor in the Euclidean (x,y)-plane;
see Eq. (2.12) and the conclusive paragraphs of Sec. 2.4
parameter characterizing the statistical average of the stress tensor;
see Eq. (5.27)

points in the complex w-plane plane with coordinates v and v
strip width; see Sec. 5

interior of the wedge with apex in the origin and centered about

the positive real axis; see Fig. 15 and the mapping in Eq. (5.3)
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Latin (continued)

o scaling dimension of the primary operator O; see Eq. (2.4)
g distance of a Janus particle from a wall measured from the particle
center; see Sec. 5.1
Xo =1x9/R scaled distance of a circular particle of radius R from a wall at a
distance zp from the particle center; see Eqgs. (6.1)-(6.3)
Y =ny/W  dimensionless parameter introduced in Sec. 5.2
z=x+1ty a point in the complex plane with Cartesian coordinates x and y

z complex conjugate of z

219 = 21 — 29 difference between two complex coordinates

Appendix B Two-point correlation functions for Janus particles
(J and Jn) and their SPOE

B.1 Mixed correlation functions (®¢);, (Pe);, and next-to-leading ¢ descen-
dants for Janus circles and Janus needles

In this Appendix we treat the Janus circle and Janus needle on the same footing. Therefore in
this Appendix we often use the subscript P for both, i.e., P € {J, Jn}.

The prefactors of the operators [I, L_1L_1,L?,,L?]e, [L_1,L_1]®, and [L_o, L 5]l in the
SPOEs in Egs. (3.2)-(3.4) and (3.5)-(3.7) for a Janus circle and a Janus needle follow from their
profiles (¢)p, (®)p, and (T)p in Secs. 2.1 and 2.2, respectively. Here we use the large distance
behavior of the two-point correlation function (®e)p in order to determine the prefactors A, B, C'
in the linear combination of the third order'® descendants [L_3,L3;,L?;L_1]® of ® and their
) in Egs. (3.2)-(3.4) and
(3.5)-(3.7), if « = 0 and R = D/2 = 1. In this case the next-to-leading order contribution to

(®)p does not provide sufficient information. The reason for this is, that the first two terms in

conjugates, which represent the next-to-leading contribution to sgp

this contribution
9Re(®(z1,71) ([AL_3 + BL®, + CL% L_1] (20, 20))>‘ =
20

A 153 _ 9C _,_ _
:2Re{<z+5ﬁB) 213+—21 22’1}’21‘ 1/4 (Bl)

to (®(z1,z1))p are identical apart from a numerical prefactor which does not allow one to

disentangle A from B. However, the analytic structure of the corresponding terms in the next-

»We do not have to consider the operators L_1L_o2® and L_sL_1®, because they can be expressed as
LoiL_2® = (4/3)L3,® and as L_oL_1® = [L_3 + (4/3)L3,]®. This follows from the level 2 degeneracy of
® (see Eq. (3.17)) and from the Virasoro algebra (Eq. (3.16)) (for further details see, e.g., Ref. [58]).
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to-leading contribution to the two-point correlation function (®(z1, z1)e(22, 22))p

2Re<<I>(21, 21)6(22, 52) ([AL_;J, + BL3_1 + CL2_1Z/_1](I)(Z(), 50))> ’ZO:O = QGRG(T) , (B2)

with
A 3 -3 ) —2 -1
7- = Z (Zl - 622 + 221 22 —+ 221 22 ) —+
3B, 4 i L o
+ m (6521 — 3202’2 + 1442;1 2y "+ 6021 25 ) +
3C
T (—1527227 " — 6425225 + 202725 1 + 4825227 — 24]z| 2egt + 320z 2T )

(B.3)

does provide sufficient information to allow the identification of A and B separately. In Eq.
(B.2), O is the bulk three-point correlation function:

1
O = (D(z1, 71)e(22, 22)®(0,0)) = —5\2113/4\221—1121 — 2| 7L, (B.4)

Concerning the necessary explicit determination of (®(z1, z1)e(21, 21))p, we proceed similarly
to the case of the profiles in Secs. 2.1 and 2.2 by transforming the corresponding two-point
correlation function (®(wy,w)e(wi,w1))m_, (in the upper half plane w = u + v with + and —
boundary conditions on the positive and negative real axis, respectively) to the geometry of the
Janus circle and Janus needle in the z plane upon using the transformations w(z) in Egs. (2.6)
and (2.25), respectively. Using the expression for the half plane function given in the last but
one equation (4.3) in Ref. [56] this reads

(®(21,21)e(22, 22))p = (P(21,21))+(e(22, 22))+ Ko (21, 21; 22, 22) (B.5)
with )
Koe(21,21; 2, %) = ——— | —3U; (1 — (4/3)U2) (1 + 2p?) + 4U,V, V- B.6
oe(21, 215 22, 22) 211\/TP2{ 1( (/)2)( p°) 2ViVva (B.6)
and
1/2
1 U1U2 ’2122’ 1 1 2 2 1 -2 -2
— = (A2 ) =l g C 1— =
2]7 (]wl—w2\2> ’21_22’ 2 4(|Zl| +|Z2| )a 8<Z1 +Z2 +
T Sl 2 Bl P e A o & 21‘1551)}
_ Y O Lo o 9y, 3 2 _ 2 |
U, = |w—j|—>z<zj —Z; ){1+§<zj + Z; ),1+§(zj + Z; )+sz Z; s
_ Y S -1 -1 Lo 1 12, L1 12
Vv, = w—)z(zj —Z; ){1+§<zj —Z ) ,1+§<zj — Z; )} (B.7)

for P corresponding to the Janus {circle; needle}. The symbol — indicates that on the right
hand side only the leading order and next-to-leading order terms in the expansion for large |z;]
are retained. The differences between the two cases arise from the different behaviors at large
z

w(z) — {z[l +2 (e 422 )[4 T (22427 /2}} : (B.8)
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where w(z) is the mapping given in Egs. (2.6) and (2.23) for the Janus circle and Janus needle,
respectively. The lower index j in the last two equations (B.7) is either 1 or 2. The first two
factors on the right hand side of Eq. (B.5) are the profiles of the order parameter and of the
energy densities around two particles with the same (circular and needle) shapes as above but
with homogeneous boundary conditions +. These particles have been denoted by “circle,+” and
“needle,+” in Egs. (2.15) and (2.27), respectively. To the order of interest the profiles are
(®(21,71)) 4 — 282 \—1/4{21/8 {1 + 112: \—2} S F (22 +77%) + 112 \—2”
1,<1)/+ 1 3 1 ) 3|8 1 1 4 1 )
1 3 1 (B:9)
(e(22,22))+ — —5\22]_2 {2 {1 + ]22\_2} i1+ {g (22_2 + 22_2) + 1\22]_2}} .

By expanding Eq. (B.5) for large distances upon using Eqs. (B.7) and (B.9), one realizes that
the next-to-leading contribution is indeed identical to the expression in Eq. (B.2) if one chooses
. 11 32 8 9 10

(A,B,C) = 2{213/4 (—7, ﬁ’—g) :29/8 (—?, — —2)} . (B.10)
We note that establishing the agreement of the next-to-leading contribution to (®e)p in Eq. (B.5)
with the complicated expression in Eq. (B.2) by adapting only three numbers is nontrivial and
a welcome opportunity to see the SPOE machinery at work. Equation (B.1), with the values of
A, B, and C from Eq. (B.10) inserted, reproduces the next-to-leading order contributions of the
order parameter profiles (®(z1, z1)); and (® (21, Z1))jn for the Janus circle and the Janus needle
given in Eqs. (2.15) and (2.31), respectively. In Secs. 4 and 7 we use these three numbers in
order to determine corresponding properties of the free energy of interaction involving the Janus
particles.

The present prefactors A, B, C' of the operators [L_3, L3, L2 L _1]® and —A, —B, —C of
their conjugates in the SPOE apply to a Janus circle and a Janus needle with radius 1 and
length 2, respectively, both in the standard orientation o = 0, i.e., they apply to the particle
configurations studied in Secs. 2.1 and 2.2. For a Janus circle and a Janus needle with radius R
and length D, respectively, both rotated counterclockwise by an angle « from their standard ori-
entation « = 0, the expressions in front of A, B, and C must be multiplied by R3+1/8 exp(3ia)
for the Janus circle, and by (D/2)3t1/% exp(3ia) for the Janus needle. Analogously, the ex-
pressions in front of the complex conjugated operators are multiplied by R3+1/8 exp(—3ic) and
(D/2)3+1/8 exp(—3ia), for the Janus circle and Janus needle, respectively. This is due to the
dilatation and rotation properties of the operators determined by their scaling dimension and
spin as discussed below Eq. (3.16) and it leads to the expressions for sgb) in Egs. (3.3) and
(3.6).

B.1.1 Next-to-leading ¢ descendants and their averages in a confined geometry

For the circular or needle-like Janus particle P embedded in a confined system ¥, here we
(@)

determine the next-to-leading contribution to the average (sp ')y, which is formed by the cor-

responding averages of the ® descendants of third order, as considered above, and which is
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required for the free energy of transfer 6F in Eq. (4.2). As mentioned in Sec. 4, for ¥ we
consider a half plane, a strip, and a wedge. The average (L_3®(29, Z9))« requires knowledge of
the corresponding average (T'(2)®(zg, Zo))w (see Eq. (3.15)). If 4 has a homogeneous boundary
a, the latter average can be obtained (via the conformal transformations studied in Sec. 4) from

the upper half w plane H, for which the conformal Ward identity yields

o /2 1 o /2 1
O of: ot of 3+ s | (O(wn. ),
= (l‘o/Q)(w — ZU(])_2(’LU — ZT)(])_2(ZU0 — w0)2<O(ZU0,’LZ)0)>Ha (B.ll)

(compare Ref. [38]). Here O, with scaling dimension z¢, is a (scalar) primary operator such as

® or €. The simplest case is the right half plane ]ﬁla for which the rotation in Eq. (5.1) yields
(T(2)0(20,70))g5, = (x0/2)(z = 20)"*(2 + 20) (20 + 20)*(O (20, 20))g5, (B.12)

and via Eq. (3.15)

<L_30(20, 20)>]ﬁ1a = —21‘(9(2:0 + 20)_3«’)(20, 20)>ﬁ1a . (B13)
For O = ® and for the half plane with its boundary belonging to the universality class a = + or
a = —, this implies that for R = D/2 = 1 and arbitrary « the next-to-leading (nl) contribution
is given by

(1)) = 2Re([¥ (AL + BLL,) + 0L L] @(en, )

a a

(A 153B o 103C Q) —
= —2Re {e?’w‘ <Z + 5?) + ewm} (2$0)_3AE})$0 1/8 (B.14)

and yields, with A, B, C from Eq. (B.10), the results for the next-to-leading averages of sgb) in

the right half plane as provided in Egs. (5.5)-(5.8).

For the strip and the wedge the same procedure applies upon combining Eq. (B.11) with the
mappings in Egs. (5.2) and (5.3), respectively. For the strip with equal boundary conditions aa
and a € {+, —, 0} at both edges, we find'6

(L_30(20, 20))500 = =2

T 3
16 (_) (3t0 + 4£5) (O(20, 20)) 5.0 (B.15)

w
and therefore
Y = 2Re([6 (AL ¢ BEL) + T2, o)

iA cos(3a) 3
= | B+ 4td) +

x (@ (20, 20))Sua »

Saa ’
iB cos(3a) — iC cos «
2048

(152t + 153t3)} (%)3 x (B.16)

'$The Schwarzian derivative S(w(z)) appearing in the transformation formula leading from the half plane to

the strip is independent of z and does not contribute to the integral in Eq. (3.15) which defines (L_30)s.
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where

to =tanYp, Yo = wyo /W (B.17)

and
_ (a) ( 7 )1/8 B8
(©(20,20))80a = Ag Weos Yo (B.18)

Inserting the values of A, B,C (Eq. (B.10)) for a circular and needle-like Janus particle yields
the results in Eq. (5.25).

B.1.2 Order parameter two-point correlation function (®®); for symmetric Janus

particles

Here and in the following subsection we check that the operators € and T in sge) and sgﬂ) of the
SPOE reproduce the behavior of (?®); and (ee); at large distances. Since the corresponding
prefactors have been determined already from the profiles (¢); and (T);, we can be very brief

and limit the discussion to the symmetric circular Janus particle. The relations

1 , , 1
— = |w(z1)||w (22)| —> B.19
o = el el (B.19)

and
2|212 |

lwig| = | (B.20)

[z1 =12 — 1]
where z19 = 21 — 29 and wio = w1 — we, will be useful in the following. While the first relation
applies to any Mobius transformation w(z), the second one follows from our specific choice for
the transformation in Eq. (2.6).

As above, here we start from the order parameter two-point correlation function in the
upper half w plane with boundary conditions + and — on the positive and negative real axis,

respectively. This correlation function can be inferred from the first equation in Eq. (4.3) in

Ref. [56]. For the present purpose it is useful to rewrite it as'”
- 1/8

<<I'(w1,w1)¢'(w2,w2)>H7+ = ”wlg‘ 1/4 (1 +p2> / Koo (B.21)

with )

B _on1/2 1-U~
K(I)(I) - <1+U > U1U2+W‘/1V2, (B22)

and

U=p 2 (142", (B.23)

where p, U;, and V; are defined in Eq. (B.7). (We note that the quantity called U here
corresponds to the quantity called u in Ref. [56].) We now proceed by calculating (®(z1,21));
which equals (®(wy,w1))m_, in Eq. (B.21) with the prefactor [wia|™'/* replaced by |z12|~1/4.

"Within our normalization (Eqs. (2.3), (2.4), and (2.5)), the amplitudes A and B appearing in Eq. (4.3) of
Ref. [56] have the values A = 2'/8 and B = —1/2; these amplitudes correspond to the ones in Eq. (2.5).
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This follows from the transformation formula in Eq. (2.1), applied to two-point correlation

functions and by using Eq. (B.19). With this, the large distance expansions in Eq. (B.7) imply

2
3 7 Y1 Y2 -3
Ko =1— = —p? 2 L - = O . B.24
PP 2p+ 8p (|Zl|2 |22|2 + (7" ) ( )

Hence the large-distance behavior of the correlation function (®(z1, z1)® (22, Z2)); is given by

3 |z
(@ (21, 21) (29, 2)) s = |20 /4 (1—— 2121 —|—2G—|—O(r_3)> , (B.25)
2 |z1]|22|
where )
1 |z12)? < Y1 Yo )
== — — . B.26
TPl \Jal? TP (B.26)

This is in agreement with the SPOE in Egs. (3.2)-(3.4), which predicts

<‘I)(21,51)‘I)(22,52)>J = <‘I)(21,51)‘I)(22,52)> + 3<(I)(21,51)‘I)(22,52)€(0,0)> +
+ 167T<(I)(21,51)‘13(22,52)Tyy(0, 0)> +..., (B27)

because within the normalization adopted in Eq. (2.4), the three-point correlation functions

appearing above are given by
(®(2a, Za) @ (26, 2)€(2e, Ze)) = Covelzab** zacl ™ 25| ™ (B.28)

with the structure constant Cpp. = —1/2 and by

O

(O(21,21)O(22, 22) T, (0,0)) = m|z12[2P0

(B.29)
with scaling dimension zp for O = ® or O = €.

B.1.3 Energy density two-point correlation function (e¢); for symmetric Janus par-

ticles

Writing the corresponding half plane expression, given by Eq. (4.3) in Ref. [56], in the form

(e(wy, w1)e(wa, Wa))u_, = |wia| *Kee (B.30)
with
K. = p2 (1 - 4V12> (1 — 4V22> +1-— or sl (u%v% + u%v% — 2u1u2v1v2> +
P’ 2.2 2 2
1+p2 | Jwi|[ws (ulv2 + uavy + 2u1u2U1v2) (B.31)
yields
(e(21, 21)e(22, 22))y = |212| K- . (B.32)
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Expanding this expression for large distance by using Eq. (B.7) and
2y -
uj = | |J2 +O(‘Zj‘ 2) )
(B.33)

=1+ |2]|2 +0(|%17?) .

leads to
(e(21,21)e(22, 22)) = |212| 7% (14 16G + O(r™?)) | (B.34)

where G is given in Eq. (B.26). This expression is in agreement with the SPOE in Egs. (3.2)-
(3.4) upon taking into account the bulk three-point correlation function in Eq. (B.29) with
O=c.

Appendix C SPOE for generalized Janus particles

In this section we derive the SPOE for generalized Janus particles. First we expand the profiles
(@), and (e);, given in Eq. (2.37) and Eq. (2.38), respectively, for large |z| = /22 + y2. This
requires expanding (O)circle,+ defined below Eq. (2.16) for O = ® and ¢ and expanding the
expression C in Eq. (2.39) for which we find

Clx;z,y) ch|z| -, (C.1)

where the coefficients C are dimensionless functions of y. The first few of them are

Co = siny, (C.2)
Ci = 2cos’xsinb, (C.3)
C; = (3cos20 —1)cos®xsiny, (C.4)
and )
Cy = 3 cos? x {(1 —3cos2x)sinf + (5cos2x — 3) sin 30] (C.5)

with § = arg(z). Together with the corresponding expansion of the expression for the stress
tensor in Eq. (2.16) this yields

- o1/4 C1 Co\ 1 3
(@(2,2))s, = E ‘1/4 {CO+| | (C2+ 0)| |2} —|—O(|z| ’ 1/4>’
) 8CoC1  4C2 — 3 +4C? + 8CoCa -5
(e, = —pi| (103 -3) + X004 2O +0(1479)
B 2cos?y  8isinycos?y _6
(T, = ==~ e +0(27%) . (C.6)

The contributions to the SPOE given in Egs. (3.8)-(3.10) follow from the requirement to repro-
duce the profiles in Eq. (C.6) on using Eq. (3.18).
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Appendix D Descendants of the identity operator in the SPOE

for quadrupolar particles

Here we consider the leading operators in the SPOE of quadrupolar particles which are descen-
dants of unity. Due to the symmetries of these particles the leading descendants are the five

operators

L oL 5l(2,2) =T(2)T(2), L2,0(2,2), L[%,0(z,2), L_4l(2,2), L_4l(z,2), (D.1)

with scaling dimension 4. We note that L_3L_11 vanishes due to 0,1 = 0, and that both L2_1L_2]I
and L_1L_3l, being equal to 2L_41, are not independent. This follows from the Virasoro algebra
(see Eq. (3.16)). Accordingly, these three operators and their conjugates do not appear in Eq.
(D.1).

D.1 Prefactors of the operators in the SPOE

In order to determine their prefactors we apply the SPOE to the energy density two-point
correlation function (g1 €2)q because in this case — due to the +/— and the duality symmetry
of the Ising model — it is only the descendants of the unit operator which via Eq. (3.18)
contribute to the correlation function. Thus beyond the bulk contribution (g1e2) = |212| ™2 the

leading large distance behavior of (e162)q must be a linear combination of the three expressions

= 212/
TO)T = — = D.2
<€152 (0) (0)> 4|Zl|4|22|4 a, ( )
2
z
£160L2,0(0,0)) = —2 (522 4+ 22120+ 522) =, D.3
(e182L2,1(0,0)) 4’212‘22%%( 1 122 + 523 ) (D.3)
and
2%2 2 2
e169L_41(0,0)) = —12 (3,2 4 4y 29 +322) =, D.4
(e182L-41(0,0)) 2’212’22%%( i 122 + 323 ) (D.4)

and of their complex conjugates. For simplicity, here we assume that the particle center is located
at the origin and we use the short notations z19 = 21 — 29 and €1 = e(21, 21), €2 = (22, Z2).
These expressions are of the order O (r~%), where |z;| = O(r), j = 1,2, is the distance from the
quadrupole. They explicitly show that TT is an isotropic operator and that the other operators
in Eq. (D.1) are anisotropic ones respecting the (even) quadrupole symmetry.

For the quadrupole in standard orientation o = 0, the explicit calculation of (e1e2)q is

explained below Eq. (D.9) and yields

1 35 |z1a) 8 2o (o 4 -8
- - 2 4 )
(e1€2)q ol 3 Tt | 3l | 2ed (21 4+ 4z 29 + 22) +cc| + (r ) ,
140 16 s
= ot i{(—85+9c) —I—cc} +O(r ) . (D.5)

This displays indeed the linear combination mentioned above and determines the prefactors of
the operators with scaling dimension 4 in the SPOE as given in Egs. (3.11) and (3.13). We note

that (e1£2)q does not contain terms of the order —3, —4, and —5 in the distance.
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Equations (3.11) and (3.13) must describe the large distance behavior of (T'(z))q as well.

By using the bulk two-point correlation functions

(T(:)T(0)T(0)) = 0, (D.6)
(T(2)L2,1(0,0)) = ;’7 _— (D.7)
and
awwﬁmwnzggz ¢ (D.8)
the SPOE predicts
(T(2))q =% g (=8% +9¢) — ;iﬁ , (D.9)

in agreement with the result in Eq. (2.54) obtained by direct calculation.
In order to obtain the result in Eq. (D.5), one follows the same route as before, relating
— via Egs. (2.1) and (2.6) — the energy density two-point correlation function to its known!®

counterpart in the half plane. This is given by

(e(z1,21)e(20, 22))q = 4l(21 — 1)(22 = V)| 7> (e(wr, @1)e(wa, @), - (D.10)

In terms of the notations used in Ref. [42], the correlation function on the right hand side of

Eq. (D.10) can be expressed as

. _ _ 2
(e(wy, D)ews, Wa))u = lm_ (e(wy, 01)e(wz, B2))1=1.6=0.6=-1.61 = —ng(S)Mam
(D.11)
with the Pfaffian of the 8 x 8 antisymmetric matrix with the elements
-1

Wq — W for 1<a<b<,

M, = (wa = w) (D.12)
Mg =1 for 1<a<7,

where (wq,...,w7) = (w1, W1, ws,Ws,1,0,—1). One has w1 = w(z1), wa = w(z2), where the
mapping w(z) is the one given in Eq. (2.6). We have used that (4, in the limit {4 — —o0, drops
out of the corresponding Eq. (16a) of Ref. [42], because it enters into both the numerator and

the denominator only as an overall factor 1/{4. The matrix elements in Eq. (D.11) are given by

2 — 12 21— 1) (2 — 1 21— 1) (7 — 1
M12:7"1 2‘ ) M13=—(1. )z ), M14=—(1. ),(2 ),
2i (|z1]%2 = 1) 2i(z1 — 22) 2i(z125 — 1)
M —(iz1+1—1)_1 My = =1 M —(iz1+1+1)_1 (D.13)
and by

(Ma3, Moy, Mos, Mg, Mar) = (M4, M13, M5, M6, M17),

(M3z4, M35, M3g, M37) = (Mg, M1s, Mg, M17) 252 5

(Mzs, Mg, Ma7) = (Mas, Mag, Maz),

Msg =1, Ms—=1/2, Mg =1, (D.14)

'8See the remarks ahead of Eq. (2.44).
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where the overbar denotes complex conjugation. We note that upon expanding for large z; and
zo, the leading distance dimension of M3 and Msy is 1 while it is O for all the other matrix
elements.

Within the recursive representation of the Pfaffian Pf®) M, = (12345678) it is the term
(21 = D(22 — 1P

3
— (13)(24)(5678) = =|M;3|> = —=
(13)(24)(5678) 2\ 13| 5 423,

(D.15)

which yields — via Egs. (D.10) and (D.11) — the bulk contribution |z12|=2 in Eq. (D.5). Here
one uses the notation (kl) = My, and the bracket with four entries is expressed by means of the
recursion formula in terms of the sum of three products of two matrix elements. We refer to
Ref. [67] for further details concerning the recursive definition of Pfaffians. The expansion of
(e(#1,21)e(22, 22))q, given by Egs. (D.10)-(D.14) up to the order —6 in the distance, has been
carried out by using Mathematica and has yielded the result in Eq. (D.5).

D.2 Descendant averages in a half plane, a strip, and a wedge

In order to calculate via Eq. (4.2) the cost of free energy to transfer a small quadrupolar particle
from the bulk into a confined geometry ¢ such as a half plane, strips, or wedges, our approach
requires knowledge of the averages of the operators in the SPOE (Egs. (3.11)-(3.13)) for these

geometries. As for the operators in Eq. (D.1), these averages are given by

(L_sL_51(20, %0))y = (T(20)T(20))s = [(T(20)T(%1))o]

Z1—20 ’
le 1
(L7520, 20))w /Czo 5 71 —Zo< (20)T'(21))e (D.16)
(L-41(20, o)) L& (T(20))
—41\20,20)/)9 = 5 0)/9 »
2dz§

where C,, is an integration path which encloses counterclockwise the point zy (see Eq. (3.15)
and the remarks following it).
Half plane

In the upper half w plane with homogeneous boundary condition a € {+,0O} on the real axis

the two-point correlation functions of the stress tensor are given by (see Ref. [38])!?

T T, = —ors ) T@s, = Lo, (D)
so that?° " .
(T (wo) T (@), = 0.15)

(’wo — 1?)0)4 B 64’[)3 ’

YEqgs. (2.29) and (3.35) in Refs. [35] and [36] contain a misprint: there ¢ should be replaced by ¢/2.
20FEquation (3.60) in Ref. [52] contains a misprint. In the second of these two equations the number 1/16 should

be replaced by 1/64 so that .A(;;) = Ag) =1/64.
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where vy = Im(wy) is the distance of wy from the boundary. The averages in H, of the other
two operators L? ,I and L_4I vanish, because due to the functional form of the stress two-point
correlation function (see Eq. (D.17)) the contour integral corresponding to Eq. (D.16) vanishes

and the average (T'(w))m, vanishes as well.

Strip

For the horizontal strip S,; of width W in the z plane, as considered in Sec. 5, the averages can
be calculated from those in the upper half w plane H,;, given above. Here one uses the general

transformation formulae?!
(T(20)T(21))y = <[(w’<zO>>2 T(wo) + 53 S(w(z0))] (0 (21)) ) + —S(w(zl>>}> ,

_ 1 - 1
(T(20)T 1))y = <[<w’<zo>>2 T(wo) + 57 S(w(x0))] | (@' (21))* T(awn) + —s<w<zl>>}> ,
Hgp
(D.19)
relating the stress tensor two-point correlation functions in the geometries ¢ and Hg,, which
are conformally connected via w(z). Here S is the Schwarzian derivative (see Eq. (2.9)). In the
present case we consider the strip &4 = S, and w(z) taken from Eq. (5.2).

For the strip with equal boundary conditions a = b € {O,+}, this yields

(T(20)T (1)) 1 (7r)4 1 “
z z =1\ 36
0/F VW Sae = 64 \ W) | sinh® (m(21 — 20)/(2WV)) 36 (D.20)
_ 1 /7\* 1 1 |
T(20)T (% == (_) cosh? (myo/ V) | 36/
(T (z0)T(20))500 = 51 3 Losh4 (myo /W) 36}
where 29 = xg + 1y9. The above relations imply
49 (!
9 _ __* (™
(L2502, 2))sea = 17555 (W) ’
2 ) (D.21)
_ W o (™
(L_oL_5l(2,2))s,, = 2304 (W) ’

where the second equation in Eq. (D.16) has been used. The average of L_4I(z, z) vanishes

because the average of the stress tensor in the strip is spatially constant.

2Tt is instructive to re-derive the transformation formulae given in Eq. (D.19) for products of the non-
primary operators T(z) and T(Z) from the common formula (s(za,Zza)e(2B,28)e(2c, Zc)e(2p,2D))%.
[w' (za)w' (z)w' (zo)w' (zp) [{e(wa, Wa)e(wr, wr)e(we, we)e(wp, Wp)) g, for the product of the four primary
operators ¢, in the geometries ¥, and %,,, by considering zap = z4 — 2z — 0, zcp = z¢ — zp — 0 while keeping
(za+zB)/2and (zc+2zp)/2 fixed. Here one uses the OPE e(z4,z4)e(2B, Z5) — |ZAB|72{1+2ZiBT((ZA+ZB)/2)+
273 5T((2a + 23)/2)} and the relation |(zap/wap)?w (za)w'(z5)| — 1 + [ZZBS (w((za + 28)/2)) + CC]/12 to-
gether with their correspondences for the pair CD. Equating the terms o z% 5z p on both sides of the primary
transformation and identifying (z4 + 2B)/2 = 20 and (z¢ + 2p)/2 = z1 yields the first equation in Eq. (D.19)
while the terms o z%5Z%p yield the second equation in Eq. (D.19). The same type of argument serves to
confirm the validity of the transformation formula (O(zo0,Z0)T(21))«. = (Jw’(20)|"° O(wo, wo)[(w' (21))*T (w1) +
(1/24)S(w(21))])«,, for the product of a primary operator and the stress tensor as well as the validity of the

transformation formula given in Eq. (2.9) for the stress tensor.
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Wedge

For the wedge W, considered in Sec. 5 the averages of all operators appearing in Eq. (D.1)
are nonzero for a generic opening angle w/Z. Like for the strip, we use the transformation in
Eq. (D.19) with 4 = W,; and w(z) from Eq. (5.3) in order to derive the present stress tensor
two-point correlation functions from the corresponding results in Egs. (D.17) and (D.18) in the
half plane and then apply the general relations in Eq. (D.16) in order to determine the averages

under consideration. For a wedge with equal boundary conditions a = b this yields

)T, = L[ O=Z0T
(- =) (D.22)
L_4I Z =)
(L-41(20, 20))Woq =
as well as _ )
1 —_ (2021)2: (1 — 52)
T(20)T = =4 D.23
(T'(20)T (21))Waa 4(z021 )2 { (z(? - 215)4 + 576 , ( )
which implies
=2 1) (4922 — 481
(L2300, 20w,y = oD ). (D.24)

1152023

For Z — oo and |z9] — oo with the ratio Z/|z| fixed at the finite expression 7/W, the wedge
reduces to the strip considered above, Zf tends to wyo/W, and one may check that the wedge
results for (TT)w and (L2 ,I)w reduce to those of the strip. This also applies to (L_4I)w which

tends to zero for zg — oo.

Operator product expansion for two energy densities

We have determined the two-point correlation functions (e1e2)¢ for energy densities €1 =
e(z1,21) and g9 = £(29, Z2) close to each other in ¢, which is a half plane, a strip, or a wedge

with homogeneous boundaries. Upon comparison with the descendant averages we have found

the form
1 2 s\, 22 (3 29/ 5\ (3
—_——t —— T T 4 T(z2)T
€1€2 ‘212‘2 ’212‘2 (Zl2 (Z) + 212 (Z)> + |212| (Z) (Z) +
L (2L2 _L 4)-%24 (252 _1 4) I(2,2) (D.25)
7|2512|2 12 —2 97~ 12 —2 9~ ) .

of the OPE of two energy density operators. Here z19 = 21 — 29 and 212 = (21 + 22)/2 and the
terms neglected on the right hand side of Eq. (D.25) are at least two orders higher in z15. The
operator equation (D.25) provides a linear relation between the averages of €162 in ¢ and those
of the descendant operators with prefactors which are independent of ¢. Our results for these
quantities in the half plane, strip, and wedge geometries fulfill these necessary conditions for the
validity of the operator equation (D.25). As further checks of Eq. (D.25) we apply it to the bulk

three-point correlations functions (e1£27(2)) and (e162T(2)T(2)). Apart from the importance
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in its own right, the OPE in Eq. (D.25) is very useful in the present context by enabling us to
read off the averages of T, T, and the combination (4L, — L_4)I for any geometry ¢, once the
corresponding two-point correlation function (e1€5)¢ is known up to second order in z1s. This
encompasses geometries both with homogeneous and inhomogeneous boundaries.

Here we provide certain details of our calculations. For a discussion of the half plane case,
in which only T'T contributes, see the paragraph?? containing Eqs. (3.59)-(3.63) in Ref. [52].

For the horizontal strip we use the well known form

T\2[ 1/4 1/2 1/2
(E122)500 (W) Linh(sinh( * cos(2mg/W) + cosh(C — ) cos(2mg/W) + cosh(C + C)
¢ = 7T212/(2W) , 5 = 7T212/(2W) , 9= (y1 + y2)/2 (D.26)

of the two-point correlation function in the strip, which follows from its counterpart in the half
plane given in Eq. (4.2) in Ref. [56]; the corresponding conformal transformation is taken from
Eq. (5.2). For fixed W and § we expand the right hand side of Eq. (D.26) up to fourth order
in ¢, ¢. The result can indeed be identified with the strip-average of the right hand side of Eq.
(D.25) by taking into account the form of the strip average (T'(z))s,, = —72/(48W?) of T (with
a € {O,+}) as well as the averages of TT and L?,I given in Egs. (D.20) and (D.21) and the
vanishing of L_4I.

For the wedge we have followed the same route to verify that the corresponding averages
of the left and right hand sides of Eq. (D.25) are identical up to order z%,. Here we use the
transformation in Eq. (5.3), the wedge average (T'(2))w,, = (1 — £%) /(482%) of T', which follows
from Eq. (5.27), and the averages in Eqs. (D.22) and (D.24) of TT, L?,I, and L_4I.

Further confirmation of the expression in Eq. (D.25) stems from the bulk three-point corre-

lation function ) .
1 212 212

Tl l2G -t 4G-2f )

where the ellipses contain terms which are by two orders higher in z32. Equation (D.27) together

<€1€2T(z)) (D.27)

with the bulk two-point correlation functions

3/2
(- 2)°

(L2,1(2,2)T(2)) = . (L_4I(2,2)T(2)) , (D.28)

and the vanishing of (T'(2)T(2)T(z)) is again consistent with Eq. (D.25). The consistency of

Eq. (D.25) with the bulk three-point correlation function (e197'(2)7'(Z)) has been shown in
Ref. [52].

Appendix E Proximal interaction for symmetric Janus circles

In order to investigate the disjoining force between two close Janus particles or between a Janus
particle and a close “wall” (i.e., the boundary of its enclosing half plane) it is advantageous to

conformally transform the system to the annulus geometry. The reason is that the corresponding

22See the footnote below Eq. (D.17).
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annulus is thin, i.e., its width W is much smaller than its diameter, so that its local properties
such as the average of the stress tensor are asymptotically equal to those of an infinitely long strip
of width B. This has been exploited in Refs. [44] and [51] in order to show that for two circles
(or two spheres in d = 3) with homogeneous boundary conditions the Derjaguin approximation
[68] actually is exact right at the critical point. Here we extend this reasoning to close circles
with inhomogeneous boundary conditions, such as the circular Janus particles considered here,
realizing that the stress tensor in the corresponding strip can be calculated rather easily. The

transformation
e

w(c) = iexp <E) (E.1)
maps the upper half w plane H to a vertical strip S in the ¢ plane of width B with its midline
coinciding with the imaginary axis. Here the four segments [—o0 < w < —1,—1 < w < 0] and
0 <w< 1,1 <w < o0 of the half plane boundary are mapped onto the [lower right, upper
right| and [upper left, lower left] boundary segments of the vertical strip, which are separated
by ¢ = B/2 and ¢ = —B/2, respectively.

The Mobius transformation?3

Z(A) _R(]—I—A
Ry Ry—A’

which is similar to Eq. (2.6), maps the annulus onto two non-overlapping circles 1 and 2. It

(E.2)

maps the interior and exterior of the circle of radius Ry, centered at the origin of the entire
A-plane, to the right and to the left half of the z-plane, separated by the imaginary axis, which
is the image of the above circle. The interior of the annulus A, centered at the origin of the
A-plane and bounded by circles with radii R < Ry and R~ > Ry, is mapped onto the exterior
of the circles 1 and 2. The latter are the images of the smaller and wider boundary circles of A
and are located in the right and the left half of the z-plane, respectively, with their centers on
the real axis. Denoting their radii by Ry and R and the closest distance between them by C,

the invariance of cross ratios yields the relation®*

&+&:(C+R1+R2)2—R%—R% (£3)
R> R< R1R2 ‘

between the two geometries. In the following we consider two special cases.

(i) The two circles are of equal size Ry = Ry = R and their centers are located at z =
+[R + C/2] as generated by Eq. (E.2) if R R~ = R2. In this case Eqs. (E.3) and (E.2)

imply
c (R>)1/4 (R<)1/4 ? 2 1 1 (EB4)
R~ |\R_ R- " R R- R-’ ‘
ii) For R~ = Ry, circle 2 reduces to the imaginary axis, forming the boundary of the right
ii) For R Ry, circle 2 red he i i is, formi he bound f the righ

half z plane, which contains circle 1 with radius R = R and its center at z =C + R. In

23The present complex position variable A in the annulus geometry should not be confused with the prefactor
A of the descendant operator L_3® in Appendix B (see Eq. (B.1)).
24A corresponding discussion concerning two spheres in arbitrary dimensions is given in Refs. [44] and [51].
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this case one has

¢_l( R RY 2R _L(R R (E5)
R 2 : " 2\R.  Ry/° ‘

Equations (E.4) and (E.5) apply to arbitrary size-to-distance ratios and imply for close distances
C < R the following relations for the width of the annulus B = R~ — R<

B — 2C, Ry — VCR, case (i), (E.6)
and
B — 2C, Ry — V2CR, case (ii), (E.7)

which will be needed in the following.

We now consider the two circles of case (i) or the circle of case (ii) endowed with inhomoge-
neous boundary conditions, representing particles such as the circular Janus ones or quadrupolar
particles. Our goal is to determine the disjoining force f,, i.e., the force necessary to shift the
two particles or the particle and the boundary apart in x direction with the orientations kept

fixed. Using the transformation given by Eq. (E.2), this force can be written as [47, 41]

fx = —%}—12 / dy mm(o y)>12 = __Rel/ dz <T(Z)>1,2

T tJ i

— ——Re 7§dA A(A4/Ry —1)%, (E.8)

i.e., in terms of the average of the Cartesian stress tensor component 7, (z,y) or of the complex
stress tensor T'(z) in the system of the two circular particles (i) or of the system of the particle
and the boundary (ii). The force can also be expressed in terms of the average of T'(A) (see
Eq. (E.2)) in the annulus geometry A with corresponding boundary conditions. Here, Fj o is
the free energy of the 1,2 system. The closed integration path € runs clockwise along the circle
with radius Ry and the factor accompanying (T'(A))a is 1/(dz/dA).

As a first step, we use Eq. (E.8) in order to re-derive the known disjoining force f, between
two circles of equal size [case (i)] or between a circle and a boundary [case (ii)] with homogeneous
boundaries @ and b. For the corresponding (rotationally invariant) annulus A = A, with
homogeneous boundary conditions a and b on the inner and outer boundary, respectively, one
has

<T(A)> A2 =7 (Lo ) a ab’A‘ = Tap(R</R>), (E.9)

which solely depends on (a,b) and the ratio R./R~; T,y is the component of the Cartesian

stress tensor normal to the annulus boundaries. Equation (E.8) implies

2Tap
= — . E.10
! Ry ( )

For a thin annulus, (Ty,)a,, equals the perpendicular stress tensor component of an infinite
strip of width R~ — Ro = B so that (Tpn)a,, — Aaw/B?%, Tan(R</Rs) — —mAu(Ro/B)? due
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to |A| = Ro, and (T'(A))a,, — —A21Aw(Ro/B)? in leading order of an expansion for small
annulus width B. Upon inserting B and Ry from Egs. (E.6) and (E.7), Egs. (E.8) and (E.9)

yield the leading order contribution to the force:

C—0 R'/? L [pe) i)
fm — WAabzc—3/2[1, \/5] — R = [Tab, Tab :| s C < R, (Ell)

in the cases [(i), (ii)] with homogeneous boundary conditions ab. As discussed in Refs. [41, 51],
the leading contribution to the exact expansion in Eq. (E.11) is identical to the result of the
Derjaguin approximation (see Ref. [68]). For later comparison, in Eq. (E.11) we have included
the next-to-leading contribution —1/(48C), which is independent of ab and the same for both
cases (i) and (ii). This expression follows from the next-to-leading contribution of 7,,(R</R~)
in the limit R /R~ 1 5.

As intuitively expected, the result in Eq. (E.11) also applies if the circles exhibit Janus
boundary conditions, provided they face each other or the wall with the homogeneous sections
of their boundaries which is realized, in particular, for the orientations o = 7/2 or @ = —7/2.
Within the present approach, in, say, case (i), the reason for this behavior is, that the four
switching points z = +(C/2 + R) £ iR correspond, via the mapping in Eq. (E.2) for close
circular particles, to the points A — Ry[1 + 1/C/R(£1 % i)] on the annulus boundaries, which
are very close to A = Rp. Thus in the last integral in Eq. (E.8) the contributions from the two
non-facing homogeneous sections of the two Janus boundaries are suppressed due to the factor

accompanying (T'(A))a.

E.1 Two close Janus circles with their switching points facing each other

Here we consider again two circular particles in configuration (i) (Eq. (E.4)) but now both are
taken with Janus boundary conditions with orientation o = 0 so that the + and — boundary
conditions are located at the upper and lower half of their surfaces, respectively. By the mapping
according to Eq. (E.2), the upper and lower half of the two boundary circles of the corresponding
annulus A also exhibit the boundary conditions + and —, respectively. The deviation d f, of the
disjoining force f, from the plausible expectation (T&L + T(_l)_) /2= TS&F (for T see Eq. (E.11))
is determined via Eq. (E.8) by the corresponding change §(T'(A))a = (T'(A))a — (T'(A))

Ay in

25For homogeneous boundary conditions, the free energy of interaction and the disjoining force between two
circles and between a circle and a wall in d = 2 can be obtained [44, 45] for arbitrary values of R/C, because
Tap in Eq. (E.10) is known [38] for an arbitrary ratio R</Rs of the radii of the boundary circles of the annulus.
A convenient representation is 7.,(R</R>) = (1/48) — §°Aup(1/6)/(47), where § = 27/|In(R</R>)|, in terms
of the amplitude Aqp(1/5) = W2<TLL>WXw5 of the spatially constant average of the stress tensor component
T, perpendicular to the parallel boundaries of a semi-periodic rectangular system. In this system the distance
between the boundaries is W and their length is the periodicity length Wé. It is related to the annulus via the
conformal transformation o(A) = W§(27) ! In(A/Rp) if the rectangle is in the o plane with one of its boundaries
extending from W&(2m) ' In(R</Ro) to Wi + (2r) ' In(R</Ro)] and the other from W§(2r)™ ! In(R> /Ro)
to Wéli + (2m) ' In(R>/Ro)]. The first term, 1/48, in 7, arises from the contribution due to the Schwarzian
derivative [0 /o’ — (3/2)(c" /c")?]/24 = 1/(48A?) to (T(A)). The explicit form of A.p(1/8) can be found, e.g.,
in Egs. (A7)-(A12) in Ref. [47].
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the expression for (T'(A))s. For close particles, i.e., a thin annulus, a non-vanishing contribution
d(T(A))a potentially appears only in the two small regions around A = R with a size of the
order of B. We note, however, that the region around A = + Ry does not contribute due to the
accompanying factor in Eq. (E.8) and that outside these two regions one has (T},,,) = —/(4813?)
because A = A__ = —7/48.

In the region around A = — Ry the annulus appears like a vertical strip S of width W = B for
which 6(T'(c))s = (T(c))z — (T(c)>~S~++ can be calculated from (T'(w))y in the upper half plane
by using Eq. (E.1). Since the upper sections of the left and right boundaries of the vertical
strip S have boundary conditions + and the two lower ones have boundary conditions —, this
corresponds to the upper half w plane H_,_ with two switching points w = £1 and with the
stress tensor average (T'(w))m_, = 2/(w? — 1) so that Eq. (E.1) yields, along the midline
¢ = ib of the vertical strip, in the ¢ = a + ib plane
) 72 1 1 s
(T(e =g = B? {2 cosh?(mb/B) * 4_8} 48182
Since 4 f, is given by Eq. (E.8) with (T'(A))a replaced by 6(T'(A))a, the integration differential
dA near A = — Ry can be replaced by d(ib), and the factor (4/Ry — 1)? can be replaced by 4.
This yields

2

= 5(T(c = ib))s + (E.12)

Ofe = ——Re / d(ib) 6(T'(c =ib))g
_ 1 2g__2__1
= B ) dﬂ cosh™ 8 = B- 0 (E.13)

i.e., a disjoining force f, = T —1/C, where we have used Eq. (E.6) in the last step. Thus ¢ f, is
attractive. The two present mrcular Janus particles at close distances are attracted more strongly
than in the reference case of two circular particles with the same homogeneous boundary. This
is plausible because the switching points face each other and “fit together”, in line with their
common property of an increased energy density. However, compared with this reference case
of two circular particles with the same homogeneous boundary (both + or both —) (see Eq.
(E.11)), the magnitude of 0 f, is only of the order of the next-to-leading contribution, i.e., by a
factor of order (C/R)Y? weaker than the leading contribution of the Derjaguin form.

The other case of the switching points facing each other occurs for one Janus particle oriented
with o = 0 and the other one with a = 7. In this case one has (T},,,)s = 237/(485?) outside
the two regions A = £Ry because A;_ = A_ = 237/48. The vertical strip has + boundary
conditions on its upper left and lower right boundary sections and — boundary conditions on

the two remaining sections so that the corresponding half plane boundary has three points,

where the boundary conditions switch: at w = —1, w = 0, and w = 1 with the stress tensor
(T'(w))m,__ given by the right hand side of Eq. (2.53). This leads to the form
. . 2372
(T(c=1b))g = 0(T'(c = ib))z — 1SE2 (E.14)

of the midline tensor of the strip where §(T'(c = ib))g is identical to the one in Eq. (E.12) so that,
upon using Eq. (E.13), §f, is again given by df, = —1/C so that the force is f, = TSP_ —-1/C.
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E.2 Janus circles with their switching points facing a + wall

We consider a Janus circle with orientation v = 0 near a vertical wall with a homogeneous +
boundary so that the Janus circle faces the wall with its switching point, which specifies the
wall-circle and the corresponding annulus geometry, as in case (ii) associated with Eq. (E.5). A
plausible expectation for the disjoining force is f, = (TS&)F + Tfl) /2, which is the mean value
(1172 /48)(R/2)'/2C~3/2 — 1/(48C) of the forces between the wall and a homogeneous + circle
and the wall and a homogeneous — circle (see Eq. (E.11)). The leading order for small distances
of this expression is equivalent to the Derjaguin approximation and leads to Eq. (5.19). Here

we show that in this case the disjoining force is given by
fo= (X +r®y/2 4 1/(40), (E.15)

so that the deviation ¢f, = 1/(4C) of the force f, from the expected expression is a repulsive
contribution. This is in accordance with intuition because the increased energy density (i.e.,
increased disorder) near the switching point on the Janus circle does “not fit” with the decreased
energy density (i.e., increased order) near the homogeneous + wall. Like in the cases of the
previous subsection, the magnitude of J f, is only of the order of the next-to-leading term in the
expression expected above for f,, i.e., it is by a factor of the order of (C/ R)l/ 2 weaker than its
leading term.

In order to derive Eq. (E.15) we write the deviation § f, from the expected expression as

5fy = —%Re% 7§Q dA {@(ImA) (T(A)a — (T(A))a,. ]+
b O Tma) (T — (AN, ]} (4/R0 -1 (5.16)

where O is the Heaviside step function (1 and 0 for positive and negative argument, respectively)
and the boundary conditions of A are those of a Janus particle with orientation o = 0 at the
inner circle while the outer circle has a homogeneous + boundary. Here we have used Eq.
(E.8) which also tells that for a homogeneous annulus the upper and the lower halves of the
integration path € separately yield the same contributions to the force, i.e., one half of it. The
contributions to the integral in Eq. (E.16) stem — like in the previous subsection — from a
small region around A = — Ry, where the annulus looks like a vertical strip with inhomogeneous
boundary conditions on its right boundary ¢ = (/2) + ib (+ for b > 0 and — for b < 0) while
its left boundary is a homogeneous + boundary. By using Eq. (E.1) the corresponding stress

tensor along the left homogeneous strip boundary is given by
w2 1 1
Tlc=—-(B/2)+ib)s=—"—55|———5 — — E1
< (C (B/ ) +1 ))g 232 (eﬂb/B n 1)2 24 |’ ( 7)

so that the strip integral, corresponding to Eq. (E.16), converges. It yields ¢ f, — 1/(2B) which
together with Eq. (E.7) leads to the result given in Eq. (E.15).
It is interesting to extend this investigation to other cases such as a Janus particle facing

with its switching point an ordinary wall, which involves three boundary conditions: +, —, and
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O [69]. For such a system there is competition between the disorder effect near the switching
point fitting well to the disorder induced by the ordinary wall and thus tending to attraction
and the effect of the + and — segments tending to repulsion. It turns out that for a Janus
circle repulsion dominates at short distances and has the form of a Derjaguin expression which
is stitched together. The particle, which according to Eq. (5.9) is attracted at large distances,
finds a stable position (i.e., the free energy minimum) at a finite and nonzero separation from
the ordinary wall. Besides the Janus circle, the behavior of the corresponding Janus needle
oriented perpendicular to the ordinary wall and with one end close to it, is also of interest. In
the present context it can be considered to be of semi-infinite extent and the disorder effect
from the tip dominates and leads to attraction. These properties can be derived from the stress
tensor average (T'(w))m,,_ in the upper half plane with boundary conditions 4, O, — in the

intervals —co < u < —1, =1 <u <1, and 1 < u < 0o, respectively.

Appendix F Degeneracy on level two

In order to understand the notion of degeneracy it is useful to consider a larger class of conformal
models, including the Ising model, the three-state Potts model etc., each of which is characterized
by a different value for the central charge c in its Virasoro algebra given in Eq. (3.16). Primary
operators O are characterized by the property L,O = 0 for all p = 1,2,3, ... so that the primary
operator has the lowest scaling dimension in its conformal class. Using the Virasoro algebra it
is easy to see that the combination up = [L?; — (2/3)(zo + 1)L_5]O of level two descendants,
which is proportional to the difference of the right hand side and left hand side of Eq. (3.16),

also has this property, provided z¢ is related to c via
c=clzp)=z0(5—4z0)/(z0 +1). (F.1)

While the condition Lque = 0 is satisfied for any primary operator O, the condition Lopuen =0
represents the above relation between z¢ and ¢. Belavin, Polyakov, and Zamolodchikov [35, 36]

(BPZ) have shown that in this case any correlation function of the form

(W1(z1,21) - - - Un(2n, ZN) o (20, 20)) (F.2)

vanishes so that it is consistent to put po = 0 which implies Eq. (3.17). This vanishing holds
not only in the bulk but also at internal points in a system with boundaries. Correspondingly
o is called a “null-field” or “null-operator” and O is called to be “degenerate on level two”.
It is instructive to check this vanishing for the simple case of three-point correlation functions
(O1011110) in the bulk made up of two primary operators which are multiplied by pe. Like the
three-point correlation function of three primary operators (cp. the expression in footnote 12)

it has a model-independent structure and for Or = Oy it is given by
(O11)01(2)110(0)) /{01 (1)O1(2)0(0)) = A[(A + 1) (=3 + 75%) — 2A(220201) 7]

—(2/3)(z0 + D)[(Ar+ A) (255" + 251) + (281 = A)(z20201) 7] (F.3)
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where 2A1 = zp, and 2A = zp are the scaling dimensions of O; and O and the notation
(m) = (2m, Zm) where m = 0, 1,2 as well as the notation z,,, = 2z, — z, have been used. Here
the first and the second line of the right hand side arises from the first and second terms in
1o, respectively, and we assume the three-point correlation function of primary operators in
the denominator to be non-vanishing. Like in Appendix B.1.1 the derivation is obtained by
combining Eq. (3.15) with the appropriate conformal Ward identity (cp. Eq. (B.11)). In
the following we show, for three examples of a non-vanishing three-point correlation function
(O10:0) with zp obeying Eq. (F.1), that — in agreement with BPZ — the right hand side of
Eq. (F.3) indeed vanishes.

(i) In the Ising model, which corresponds to ¢ = 1/2 we consider (®(1)®(2)e(0)). Here the
scaling dimension zp = 2A = z. = 1 satisfies Eq. (F.1) and — with 2A1 = 2z = 1/8
— the right hand side of Eq. (F.3) and thus (®(1)®(2)u.(0)) vanishes. Since the scaling
dimension of ® also satisfies Eq. (F.1), the correlation function (®epuge) must also vanish.

This can be shown along similar lines.

(ii) For the three-state Potts model one has ¢ = z. = 4/5 and z¢ = 2/15, and (®(1)P(2)e(0))
is non-vanishing. Thus Eq. (F.1) is fulfilled for O = ¢ and (®(1)®(2)p-(0)) is expected
to vanish. Indeed, the right hand side of Eq. (F.3) vanishes for the corresponding values
2A = 4/5 and 2A; = 2/15.

(iii) Finally, we consider the Yang-Lee edge singularity model (i.e., the critical point of an Ising
model in a purely imaginary magnetic field) which has only one primary operator O the
three-point correlation function of which is non-vanishing (see Ref. [24]). Here ¢ = —22/5
and xp = —2/5 satisfy Eq. (F.1) so that (O(1)O(2)uep(0)) is expected to vanish. This is
corroborated by the vanishing of the right hand side of Eq. (F.3) for the corresponding
values A = A = —1/5.

As an example for a system with a boundary we consider in the upper half z plane H, with a
homogeneous boundary a = + or O the correlation function with the stress tensor, (T uo)m,
which has a model-independent form. If T is located at the origin z = 0, i.e., right at the

boundary, this form is particularly simple and reads

(T(0)uo(z,2))a, /(O(2,2))m, = lc(zo) — e (20 +1)/3

with ¢(zp) as given above. The expression on the right hand side is independent of a and indeed

vanishes for ¢ = ¢(zp).
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