000877252 001__ 877252
000877252 005__ 20240610121158.0
000877252 0247_ $$2doi$$a10.1039/D0NH00117A
000877252 0247_ $$2ISSN$$a2055-6756
000877252 0247_ $$2ISSN$$a2055-6764
000877252 0247_ $$2Handle$$a2128/25312
000877252 0247_ $$2altmetric$$aaltmetric:84088890
000877252 0247_ $$2pmid$$apmid:32542274
000877252 0247_ $$2WOS$$aWOS:000543912700013
000877252 037__ $$aFZJ-2020-02078
000877252 041__ $$aEnglish
000877252 082__ $$a540
000877252 1001_ $$0P:(DE-Juel1)165357$$aJosten, Elisabeth$$b0$$eCorresponding author
000877252 245__ $$aStrong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals
000877252 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2020
000877252 3367_ $$2DRIVER$$aarticle
000877252 3367_ $$2DataCite$$aOutput Types/Journal article
000877252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1596546617_4967
000877252 3367_ $$2BibTeX$$aARTICLE
000877252 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877252 3367_ $$00$$2EndNote$$aJournal Article
000877252 520__ $$aThe self-assembly of nanoparticles into highly ordered crystals is largely influenced by variations in the size and shape of the constituent particles, with crystallization generally not observed if their polydispersity is too large. Here, we report on size selectivity in the self-assembly of rounded cubic maghemite nanoparticles into three-dimensional mesocrystals. Different X-ray scattering techniques are used to study and compare a nanoparticle dispersion that is used later for self-assembly, an ensemble of mesocrystals grown on a substrate, as well as an individual mesocrystal. The individual μm-sized mesocrystal is isolated using a focused-ion-beam-based technique and investigated by the diffraction of a micro-focused X-ray beam. Structural analysis reveals that individual mesocrystals have a drastically smaller size dispersity of nanoparticles than that in the initial dispersion, implying very strong size selectivity during self-assembly. The small size dispersity of the nanoparticles within individual mesocrystals is accompanied by a very narrow lattice parameter distribution. In contrast, the lattice parameter distribution within all mesocrystals of an ensemble is about four times wider than that of individual mesocrystals, indicating significant size fractionalization between mesocrystals during self-assembly. The small size dispersity within each mesocrystal has important implications for their physical properties.
000877252 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000877252 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000877252 588__ $$aDataset connected to CrossRef
000877252 7001_ $$0P:(DE-Juel1)130504$$aAngst, Manuel$$b1
000877252 7001_ $$0P:(DE-Juel1)130656$$aGlavic, Artur$$b2
000877252 7001_ $$0P:(DE-Juel1)131055$$aZakalek, Paul$$b3$$ufzj
000877252 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b4
000877252 7001_ $$0P:(DE-HGF)0$$aSeeck, Oliver H.$$b5
000877252 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b6$$ufzj
000877252 7001_ $$0P:(DE-HGF)0$$aWetterskog, Erik$$b7
000877252 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b8
000877252 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b9
000877252 7001_ $$0P:(DE-HGF)0$$aBergström, Lennart$$b10
000877252 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b11
000877252 773__ $$0PERI:(DE-600)2840770-2$$a10.1039/D0NH00117A$$gp. 10.1039.D0NH00117A$$n7$$p1065-1072$$tNanoscale horizons$$v5$$x2055-6756$$y2020
000877252 8564_ $$uhttps://juser.fz-juelich.de/record/877252/files/Invoice_INV_003878.pdf
000877252 8564_ $$uhttps://juser.fz-juelich.de/record/877252/files/Invoice_INV_005263.pdf
000877252 8564_ $$uhttps://juser.fz-juelich.de/record/877252/files/Invoice_INV_003878.pdf?subformat=pdfa$$xpdfa
000877252 8564_ $$uhttps://juser.fz-juelich.de/record/877252/files/Invoice_INV_005263.pdf?subformat=pdfa$$xpdfa
000877252 8564_ $$uhttps://juser.fz-juelich.de/record/877252/files/d0nh00117a.pdf$$yOpenAccess
000877252 8564_ $$uhttps://juser.fz-juelich.de/record/877252/files/d0nh00117a.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877252 8767_ $$8INV_003878$$92020-05-26$$d2020-05-29$$eHybrid-OA$$jZahlung erfolgt$$zGBP 1000,-, Belegnr. 1200153582, 04.06. bezahlt
000877252 8767_ $$8INV_005263$$92020-07-24$$d2020-08-10$$eCover$$jZahlung erfolgt$$zGBP 1000,-, Belegnr. 1200155394
000877252 909CO $$ooai:juser.fz-juelich.de:877252$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165357$$aForschungszentrum Jülich$$b0$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130504$$aForschungszentrum Jülich$$b1$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131055$$aForschungszentrum Jülich$$b3$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b4$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b6$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich$$b8$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000877252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b11$$kFZJ
000877252 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000877252 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000877252 9141_ $$y2020
000877252 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000877252 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE HORIZ : 2018$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE HORIZ : 2018$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877252 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-28$$wger
000877252 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-28
000877252 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-28
000877252 920__ $$lyes
000877252 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000877252 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000877252 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x2
000877252 9801_ $$aAPC
000877252 9801_ $$aFullTexts
000877252 980__ $$ajournal
000877252 980__ $$aVDB
000877252 980__ $$aI:(DE-Juel1)PGI-5-20110106
000877252 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000877252 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000877252 980__ $$aAPC
000877252 980__ $$aUNRESTRICTED
000877252 981__ $$aI:(DE-Juel1)ER-C-1-20170209