000877254 001__ 877254
000877254 005__ 20250129094240.0
000877254 0247_ $$2Handle$$a2128/28137
000877254 037__ $$aFZJ-2020-02080
000877254 041__ $$aEnglish
000877254 1001_ $$0P:(DE-Juel1)180349$$aZhang, Hengbo$$b0$$eCorresponding author
000877254 1112_ $$aInstitutsseminar des JCNS-2$$cForschungszentrum Jülich$$d2020-05-14 - 2020-05-14$$wGermany
000877254 245__ $$aInfluence of oxygen stoichiometry onto the physical properties of complex oxide thin films$$f2020-05-14 - 
000877254 260__ $$c2020
000877254 3367_ $$033$$2EndNote$$aConference Paper
000877254 3367_ $$2DataCite$$aOther
000877254 3367_ $$2BibTeX$$aINPROCEEDINGS
000877254 3367_ $$2ORCID$$aLECTURE_SPEECH
000877254 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1591108652_6059$$xInvited
000877254 3367_ $$2DINI$$aOther
000877254 520__ $$aOxygen vacancies play a crucial role for controlling physical properties in complex oxides. The oxygen stoichiometry can be tuned e.g. via absorbing or desorbing oxygen and by this modifying the lattice structure, magnetization and electronic transport properties. This provides the possibility for technological applications, e.g. in information storage, catalysis or sensorics. In a previous study of LaxSr1-xMnO3 (LSMO), thin films were grown at large oxygen pressures on single crystal substrates SrTiO3 and a perfect perovskite structure was obtained. However, in this study here, LSMO thin films are grown at lower oxygen pressures. As in the proceeding study the samples are grown by High Oxygen Pressure Sputter Deposition(HOPSD) at various growth parameters in order to study the influence of the growth parameters onto the structural and physical properties. Moreover, after preparation various methods have been investigated to deoxygenate the LSMO films, i.e. vacuum annealing, reductive gas annealing, e.g. in ammonia, and titanium-sponge assisted oxygen desorption. By vacuum annealing the oxygen-deficient brownmillerite phase is prepared from the as-prepared perovskite phase. The magnetic and electronic transport properties evidence that the system becomes antiferromagnetic and insulating. In addition, for a better understanding of the magnetic behavior of the system, Polarized Neutron Reflectivity (PNR) had been employed to study the magnetic depth profile of the as-prepared system as well as of the oxygen-deficient system.
000877254 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000877254 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000877254 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000877254 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000877254 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000877254 7870_ $$0FZJ-2019-05419$$iIsMemberOf
000877254 8564_ $$uhttps://juser.fz-juelich.de/record/877254/files/zhang.pdf$$yOpenAccess
000877254 909CO $$ooai:juser.fz-juelich.de:877254$$pdriver$$pVDB$$popen_access$$popenaire
000877254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180349$$aForschungszentrum Jülich$$b0$$kFZJ
000877254 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000877254 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000877254 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000877254 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000877254 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000877254 9141_ $$y2020
000877254 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877254 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000877254 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000877254 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000877254 9801_ $$aFullTexts
000877254 980__ $$atalk
000877254 980__ $$aVDB
000877254 980__ $$aUNRESTRICTED
000877254 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000877254 980__ $$aI:(DE-Juel1)PGI-4-20110106
000877254 980__ $$aI:(DE-82)080009_20140620
000877254 981__ $$aI:(DE-Juel1)JCNS-2-20110106