| Hauptseite > Publikationsdatenbank > Influence of oxygen stoichiometry onto the physical properties of complex oxide thin films > print |
| 001 | 877254 | ||
| 005 | 20250129094240.0 | ||
| 024 | 7 | _ | |a 2128/28137 |2 Handle |
| 037 | _ | _ | |a FZJ-2020-02080 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Zhang, Hengbo |0 P:(DE-Juel1)180349 |b 0 |e Corresponding author |
| 111 | 2 | _ | |a Institutsseminar des JCNS-2 |c Forschungszentrum Jülich |d 2020-05-14 - 2020-05-14 |w Germany |
| 245 | _ | _ | |a Influence of oxygen stoichiometry onto the physical properties of complex oxide thin films |f 2020-05-14 - |
| 260 | _ | _ | |c 2020 |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a Other |2 DataCite |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
| 336 | 7 | _ | |a Talk (non-conference) |b talk |m talk |0 PUB:(DE-HGF)31 |s 1591108652_6059 |2 PUB:(DE-HGF) |x Invited |
| 336 | 7 | _ | |a Other |2 DINI |
| 520 | _ | _ | |a Oxygen vacancies play a crucial role for controlling physical properties in complex oxides. The oxygen stoichiometry can be tuned e.g. via absorbing or desorbing oxygen and by this modifying the lattice structure, magnetization and electronic transport properties. This provides the possibility for technological applications, e.g. in information storage, catalysis or sensorics. In a previous study of LaxSr1-xMnO3 (LSMO), thin films were grown at large oxygen pressures on single crystal substrates SrTiO3 and a perfect perovskite structure was obtained. However, in this study here, LSMO thin films are grown at lower oxygen pressures. As in the proceeding study the samples are grown by High Oxygen Pressure Sputter Deposition(HOPSD) at various growth parameters in order to study the influence of the growth parameters onto the structural and physical properties. Moreover, after preparation various methods have been investigated to deoxygenate the LSMO films, i.e. vacuum annealing, reductive gas annealing, e.g. in ammonia, and titanium-sponge assisted oxygen desorption. By vacuum annealing the oxygen-deficient brownmillerite phase is prepared from the as-prepared perovskite phase. The magnetic and electronic transport properties evidence that the system becomes antiferromagnetic and insulating. In addition, for a better understanding of the magnetic behavior of the system, Polarized Neutron Reflectivity (PNR) had been employed to study the magnetic depth profile of the as-prepared system as well as of the oxygen-deficient system. |
| 536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
| 536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 1 |
| 536 | _ | _ | |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) |0 G:(DE-HGF)POF3-6212 |c POF3-621 |f POF III |x 2 |
| 536 | _ | _ | |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) |0 G:(DE-HGF)POF3-6213 |c POF3-621 |f POF III |x 3 |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 4 |
| 787 | 0 | _ | |i IsMemberOf |0 FZJ-2019-05419 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/877254/files/zhang.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:877254 |p openaire |p open_access |p VDB |p driver |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180349 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Collective States |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Controlling Collective States |x 1 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6212 |x 2 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-621 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v In-house research on the structure, dynamics and function of matter |9 G:(DE-HGF)POF3-6213 |x 3 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |4 G:(DE-HGF)POF |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 4 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-2-20110106 |k JCNS-2 |l Streumethoden |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-4-20110106 |k PGI-4 |l Streumethoden |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a talk |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-4-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 981 | _ | _ | |a I:(DE-Juel1)JCNS-2-20110106 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|