000877258 001__ 877258
000877258 005__ 20220930130240.0
000877258 0247_ $$2doi$$a10.1002/fam.2841
000877258 0247_ $$2ISSN$$a0308-0501
000877258 0247_ $$2ISSN$$a1099-1018
000877258 0247_ $$2Handle$$a2128/29033
000877258 0247_ $$2altmetric$$aaltmetric:82999915
000877258 0247_ $$2WOS$$aWOS:000534739200001
000877258 037__ $$aFZJ-2020-02084
000877258 082__ $$a690
000877258 1001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b0$$eCorresponding author
000877258 245__ $$aSpatiotemporal measurement of light extinction coefficients in compartment fires
000877258 260__ $$aNew York, NY [u.a.]$$bWiley$$c2021
000877258 3367_ $$2DRIVER$$aarticle
000877258 3367_ $$2DataCite$$aOutput Types/Journal article
000877258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637070123_7185
000877258 3367_ $$2BibTeX$$aARTICLE
000877258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877258 3367_ $$00$$2EndNote$$aJournal Article
000877258 520__ $$aIn case of fire, the visibility plays a major role as it limits the occupants’ orientation capabilities and the perception of signs. These effects are determined by the light extinction due to smoke or other aerosols produced in fires. The presented method is based on the optical observation of an array of light sources during a fire in a laboratory experiment. The smoke induced into the compartment leads to a drop in intensity of each individual light source. This information is used to deduce the extinction along the line-of-sight to the camera. Once the data are captured, an automated processing is used to locate the diodes on the images and determine their intensity. Here, the optical image of the small diodes is assumed to have a known shape, so that the optimisation algorithm is capable to identify the location of the diode’s centre and quantify the luminosity in a sub-pixel range. The result is a time series for each diode, indicating the change of the relative luminosity, w.r.t. the initial values. Finally, a model for the extinction along each line-of-sight is formulated. It assumes that the light extinction coefficient is distributed in homogeneous layers. The number of layers is a free model parameter. Given this spatial distribution of the extinction coefficient and the experimental geometry, each line-of-sight is impacted by a number of layers, of yet unknown coefficient values. An inverse modelling approach is used here to find coefficient values that match the modelled line-of-sight extinction with the observed luminosity drops. The final result is a time- and height-dependent distribution of the light extinction coefficient during the full experiment.
000877258 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000877258 588__ $$aDataset connected to CrossRef
000877258 7001_ $$0P:(DE-Juel1)138417$$aBelt, Alexander$$b1
000877258 7001_ $$0P:(DE-HGF)0$$aSchultze, Thorsten$$b2
000877258 7001_ $$0P:(DE-HGF)0$$aSichma, Lea$$b3
000877258 773__ $$0PERI:(DE-600)2002816-7$$a10.1002/fam.2841$$gp. fam.2841$$n8$$p1075-1084$$tFire and materials$$v45$$x1099-1018$$y2021
000877258 8564_ $$uhttps://juser.fz-juelich.de/record/877258/files/fam.2841-1.pdf$$yOpenAccess
000877258 8767_ $$d2020-12-29$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000877258 909CO $$ooai:juser.fz-juelich.de:877258$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000877258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b0$$kFZJ
000877258 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)132044$$aBergische Universität Wuppertal$$b0
000877258 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138417$$aForschungszentrum Jülich$$b1$$kFZJ
000877258 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000877258 9141_ $$y2021
000877258 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877258 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877258 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877258 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFIRE MATER : 2018$$d2020-02-26
000877258 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877258 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877258 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877258 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877258 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877258 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877258 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000877258 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877258 920__ $$lyes
000877258 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000877258 980__ $$ajournal
000877258 980__ $$aVDB
000877258 980__ $$aUNRESTRICTED
000877258 980__ $$aI:(DE-Juel1)IAS-7-20180321
000877258 980__ $$aAPC
000877258 9801_ $$aAPC
000877258 9801_ $$aFullTexts