000877276 001__ 877276
000877276 005__ 20240708132659.0
000877276 0247_ $$2doi$$a10.1016/j.mtener.2020.100416
000877276 0247_ $$2Handle$$a2128/25262
000877276 0247_ $$2WOS$$aWOS:000539083500022
000877276 037__ $$aFZJ-2020-02099
000877276 082__ $$a600
000877276 1001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b0$$eCorresponding author
000877276 245__ $$aFreestanding LiFe0. 2Mn0. 8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries
000877276 260__ $$aAmsterdam [u.a.]$$bElsevier Ltd.$$c2020
000877276 3367_ $$2DRIVER$$aarticle
000877276 3367_ $$2DataCite$$aOutput Types/Journal article
000877276 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594367955_14806
000877276 3367_ $$2BibTeX$$aARTICLE
000877276 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877276 3367_ $$00$$2EndNote$$aJournal Article
000877276 520__ $$aFreestanding electrodes for lithium ion batteries are considered as a promising option to increase the total gravimetric energy density of the cells due to a decreased weight of electrochemically inactive materials. We report a simple procedure for the fabrication of freestanding LiFe0.2Mn0.8PO4 (LFMP)/rGO electrodes with a very high loading of active material of 83 wt%, high total loading of up to 8 mg cm−2, high energy density, excellent cycling stability and at the same time very fast charging rate, with a total performance significantly exceeding the values reported in the literature. The keys to the improved electrode performance are optimization of LFMP nanoparticles via nanoscaling and doping; the use of graphene oxide (GO) with its high concentration of surface functional groups favoring the adhesion of high amounts of LFMP nanoparticles, and freeze-casting of the GO-based nanocomposites to prevent the morphology collapse and provide a unique fluffy open microstructure of the freestanding electrodes. The rate and the cycling performance of the obtained freestanding electrodes are superior compared to their Al-foil coated equivalents, especially when calculated for the entire weight of the electrode, due to the extremely reduced content of electrochemically inactive material (17 wt% of electrochemically inactive material in case of the freestanding compared to 90 wt% for the Al-foil based electrode), resulting in 120 mAh g−1electrode in contrast to 10 mAh g−1electrode at 0.2 C. The electrochemical performance of the freestanding LFMP/rGO electrodes is also considerably better than the values reported in literature for freestanding LFMP and LMP composites, and can even keep up with those of LFP-based analogues. The freestanding LFMP/rGO reported in this work is additionally attractive due to its high gravimetric energy density (604 Wh kg−1LFMP at 0.2C). The obtained results demonstrate the advantage of freestanding LiFe0.2Mn0.8PO4/rGO electrodes and their great potential for applications in lithium ion batteries.
000877276 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877276 588__ $$aDataset connected to CrossRef
000877276 7001_ $$0P:(DE-Juel1)180434$$aBöhm, Daniel$$b1
000877276 7001_ $$0P:(DE-HGF)0$$aLuxa, Jan$$b2
000877276 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b3
000877276 7001_ $$0P:(DE-HGF)0$$aSofer, Zdenek$$b4
000877276 7001_ $$0P:(DE-HGF)0$$aSemenenko, Dmitri A.$$b5
000877276 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b6
000877276 7001_ $$0P:(DE-Juel1)171780$$aFattakhova, Dina$$b7
000877276 773__ $$0PERI:(DE-600)2879104-6$$a10.1016/j.mtener.2020.100416$$gVol. 16, p. 100416 -$$p100416$$tMaterials today$$v16$$x2468-6069$$y2020
000877276 8564_ $$uhttps://juser.fz-juelich.de/record/877276/files/batt.201900173.pdf$$yPublished on 2020-05-07. Available in OpenAccess from 2022-05-07.
000877276 8564_ $$uhttps://juser.fz-juelich.de/record/877276/files/batt.201900173.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-07. Available in OpenAccess from 2022-05-07.
000877276 909CO $$ooai:juser.fz-juelich.de:877276$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877276 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b0$$kFZJ
000877276 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180434$$aForschungszentrum Jülich$$b1$$kFZJ
000877276 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Inorganic Chemistry, University of Chemistry and Technology Prague$$b2
000877276 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry and Center for NanoScience (CeNS)$$b3
000877276 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Ludwig-Maximilians-Universität München (LMU Munich)$$b3
000877276 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Inorganic Chemistry, University of Chemistry and Technology $$b4
000877276 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Laboratory of Physical and Chemical Processes in Post Li-ion Batteries, Moscow Institute of Physics and Technology, $$b5
000877276 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU Munich), $$b6
000877276 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ
000877276 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877276 9141_ $$y2020
000877276 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877276 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-28
000877276 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-28
000877276 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877276 9801_ $$aFullTexts
000877276 980__ $$ajournal
000877276 980__ $$aVDB
000877276 980__ $$aUNRESTRICTED
000877276 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877276 981__ $$aI:(DE-Juel1)IMD-2-20101013