
PARALLEL I/O AND PORTABLE DATA FORMATS

27.01.2020 I SEBASTIAN LÜHRS (S.LUEHRS@FZ-JUELICH.DE)

INTRODUCTION AND PARALLEL I/O STRATEGIES

JUST STORAGE SYSTEM

JUelich STorage

3

JuAMS

JUST

JURECA + JURECA Booster
3600+ Nodes

JUROPA3-ZEA

JUROPA3

DEEP

JUDAC

EUDAT

JUWELS
2600+ Nodes

SAN

IBM Spectrum Protect
(TSM)

JUSTTSM

JUSTDSS

XCST

CES

IBM Spectrum Scale
(GPFS)

IBM Spectrum Scale
(GPFS)

IBM Spectrum Scale
(GPFS)

JUST

JuNet

N
F

S

B
a
c
k
u

p

R
e
s
to

re

Backup

HSM

$DATA

$SCRATCH
$FASTDATA
$PROJECT
$ARCHIVE
$HOME

4

File I/O to GPFS

5

JUST 5th generation

Page 6

Enclosure disks

3 x 100 GE

8
TSM Server

Power 8

2
Cluster Management

Monitoring

5
GPFS

Manager

2
Cluster Export
Server (NFS)

2 x 200 GE 1 x 100 GE

Declustered RAID

Disk failure causes disk rebuild
Volume degraded for a long time
performance impact for file system

Disk failure causes strips rebuild
all disc involved
Volume degraded for a short time
minimized performance impact

7

JUST Characteristics
Spectrum Scale (GPFS 5.0.1) + GNR (GPFS Native RAID)

Declustered RAID technology

End-to-End data integrity

Spectrum Protect (TSM) for Backup & HSM

Hardware:

x86 based server + RHEL 7

IBM Power 8 + AIX 7.2

100GE network fabric

75 PB gross capacity

Bandwidth: 400 GB/s

8

PARALLEL I/O STRATEGIES

Parallel I/O Strategies
One process performs I/O

10

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

- I/O bandwidth is limited to the rate of this single process

- Additional communication might be necessary

- Other processes may idle and waste computing resources during I/O time

One process performs I/O

11

Parallel I/O Pitfalls
Frequent flushing on small blocks

12

Modern file systems in HPC have large file system blocks (e.g. 4MB)

A flush on a file handle forces the file system to perform all pending write operations

If application writes in small data blocks, the same file system block it has to be read and

written multiple times

Performance degradation due to the inability to combine several write calls

Parallel I/O Strategies
Task-local files

13

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Parallel I/O Strategies

+ Simple to implement

+ No coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to be merged to create a canonical dataset

- File system might serialize meta data modification

Task-local files

14

Parallel I/O Pitfalls
Serialization of meta data modification

15

Example: Creating files in parallel in the same directory

The creation of 2.097.152 files costs 113.595 core hours on JUQUEEN!

Parallel file creation on JUQUEEN

0.5-28 racks, 64 tasks/node
W. Frings

Meta-data wall on file level

File changes by multiple processes can

cause serialization

File meta-data management

Locking

file i-nodefile i-node
indirect
blocks
indirect
blocksI/O-

client
I/O-

client

FS blocksFS blocks

file i-node
indirect
blocksI/O-

client

FS blocks

Parallel I/O Strategies
Shared files

16

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

Parallel I/O Strategies

+ Number of files is independent of number of processes

+ File can be in canonical representation (no post-processing)

- Uncoordinated client requests might induce time penalties

- File layout may induce false sharing of file system blocks

Shared files

17

Parallel I/O Pitfalls
False sharing of file system blocks

18

Data blocks of individual processes do not fill up a complete file system block

Several processes share a file system block

Exclusive access (e.g. write) must be serialized

The more processes have to synchronize the more waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data
task 1

data
task 2

lock

t1 t2

lock

I/O Workflow

19

Post processing can be very time-consuming (> data creation)

Widely used portable data formats avoid post processing

Data transportation time can be long:

Use shared file system for file access, avoid raw data transport

Avoid renaming/moving of big files (can block backup)

data creation

data post processing
(merge files, switch to
different file format) visualization

Parallel I/O Pitfalls

Endianness (byte order) of binary data

Conversion of files might be necessary and expensive

Portability

20

2,712,847,316

=

10100001 10110010 11000011 11010100

Address Little Endian Big Endian

1000 11010100 10100001

1001 11000011 10110010

1002 10110010 11000011

1003 10100001 11010100

Parallel I/O Pitfalls

Memory order depends on programming language

Transpose of array might be necessary when using different programming languages in

the same workflow

Solution: Choosing a portable data format (HDF5, NetCDF)

Portability

21

Address row-major order
(e.g. C/C++)

column-major order
(e.g. Fortran)

1000 1 1

1001 2 4

1002 3 7

1003 4 2

1004 5 5

1 2 3

4 5 6

7 8 9

Storage Tiers
Different storage tiers with different optimization targets

22

$ARCHIVE

$DATA

$FASTDATA

$SCRATCH

HPST

D
a
ta

 s
ta

g
in

g
a

t
JS

C

Tape Library JUST 5

How to choose the I/O strategy?
Performance considerations

Amount of data

Frequency of reading/writing

Scalability

Portability

Different HPC architectures

Data exchange with others

Long-term storage

E.g. use two formats and converters:

as-

External: Write/read data in non-decomposed format (portable, system-independent, self-

describing)

23

Parallel I/O Software Stack

24

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF

S
h

a
re

d

fil
e

Task-
local
files

NetCDF-4

SIONlib

data stored in global view in local view

HANDS ON PREPARATION

HPC access

26

Register and join the course project:
https://judoor.fz-
juelich.de/projects/join/training2000

JUDOOR account and
part of the training2000

project?

Create a new public/private Key-pair:
ssh-keygen or use puttygen
Add the private key into your agent:
ssh-add <private_key>

Available SSH-Key?

Upload your public key via https://judoor.fz-
juelich.de to the system

Public key on the
system?

Try to login:
ssh <userid>@jureca.fz-juelich.deLogin possible?

Course exercise: Mandelbrot set
Set of all complex numbers in the complex plane for which

does not approach infinity

Im[c]

Re[c]

27

Course exercise: Mandelbrot set
I/O comparison example

Four different decomposition types

stride

static

master-worker (workers write)

master-worker (master writes)

Five different output formats

SIONlib

HDF5

MPI-IO

parallel-netcdf

netcdf4
28

Decomposition types

stride static

master-worker, workers write master-worker, master writes

blocksize

blocksize

blocksize

width

height

29

mandelmpi

C
o

m
m

a
n

d
 l

in
e

 o
p

ti
o

n
s

-v use verbose mode

-t decomposition type (0: stride, 1: static, 2: master-worker worker write,
3: master-worker master write), default: 0

-w width, default: 256

-h height, default: 256

-b blocksize (not used for type = 1), default: 64

-p number of procs in x-direction (only used for type = 1)

-q number of procs in y-direction (only used for type = 1)

-x coordinates of initial area: x1 x2 y1 y2,
default: -1.5 0.5 -1.0 1.0

-i max. iterations, default 256

-f output type (0: SIONlib, 1: HDF5, 2: MPI-IO, 3: pnetcdf, 4: netcdf4),
default: 0

30

Output

mandelseq

process distribution image
only available for SIONlib

Command line options

-f output type (0: SIONlib, 1: HDF5, 2: MPI-IO, 3: pnetcdf, 4: netcdf4),
default: 0

31

Mandelbrot exercise workflow

mandelmpi

open_<lib>

write_to_<lib>_file

close_<lib>

mandelseq

collect_<lib>

data
file

data
file

32

Mandelbrot exercise workflow
1. Load modules

. load_modules_jureca.sh

2. Run compilation

make

3. Change runtime parameter in "run.job" file or use srun

4. Submit a job if not using srun directly

sbatch run.job

5. Create result image

./mandelseq -f <format>

6. View image (not in interactive session)

display mandelcol.ppm

33

Mandelbrot exercise API

C

typedef struct _infostruct

{

int type; int width; int height;

int numprocs;

double xmin; double xmax; double ymin; double ymax;

int maxiter;

} _infostruct;

F
o

rt
ra

n

type :: t_infostruct

integer :: type, width, height

integer :: numprocs

real :: xmin, xmax, ymin, ymax

integer :: maxiter

end type t_infostruct

34

F
o

rt
ra

n

open_<lib>(fid, info, blocksize, start, rank)

<type>, intent(out) :: fid

type(t_infostruct), intent(in) :: info

integer, dimension(2), intent(in) :: blocksize

integer, dimension(2), intent(in) :: start

integer, intent(in) :: rank

Mandelbrot exercise API

C

void open_<lib>(<type> *fid, _infostruct *infostruct,

int *blocksize, int *start, int rank)

fid lib specific file_id (can occurs twice if multiple ids needed)

info global information structure

blocksize chosen (or calculated) blocksizes (C: [y,x], Fortran: [x,y])

start calculated start point (C: [y,x], Fortran: [x,y], starting at 0)

rank process MPI rank

35

F
o

rt
ra

n close_<lib>(fid, info, rank)

<type>, intent(inout) :: fid

type(t_infostruct), intent(in) :: info

integer, intent(in) :: rank

Mandelbrot exercise API

C

void close_<lib>(<type> *fid, _infostruct *infostruct,

int rank)

fid lib specific file_id (can occurs twice if multiple ids needed)

info global information structure

rank process MPI rank

36

F
o

rt
ra

n

write_to_<lib>_file(fid, info, iterations, width, height,

xpos, ypos)

<type>, intent(in) :: fid

type(t_infostruct), intent(in) :: info

integer, dimension(:), intent(in) :: iterations

integer, intent(in) :: width

integer, intent(in) :: height

integer, intent(in) :: xpos

integer, intent(in) :: ypos

Mandelbrot exercise API

C

void write_to_<lib>_file(

<type> *fid, _infostruct *infostruct, int *iterations,

int width, int height, int xpos, int ypos)

iterations data array

width, height size of current data block (pixel coordinates)

xpos, ypos position of current data block (pixel coordinates starting at 0)

37

F
o

rt
ra

n collect_<lib>(iterations, proc_distribution, info)

integer, dimension(:), pointer :: iterations

integer, dimension(:), pointer :: proc_distribution

type(t_infostruct), intent(inout) :: info

Mandelbrot exercise API

C

void collect_<lib>(

int **iterations, int **proc_distribution,

_infostruct *infostruct)

iterations data array

proc_distribution process distribution array (only in Sionlib)

info global information structure

38

