> 4

PARALLEL I/O WITH MPI

29 January 2020 | Benedikt Steinbusch | Jiilich Supercomputing Centre

g JULICH

Member of the Helmholtz Association Forschungszentrum

> 4

Part I: Introduction

Forschungszentrum

g JULICH

MPI1/O FACT SHEET

Data model asequence of typed data items
Self describing no
Full control of file content maybe

Use cases
» Implementing higher level formats
» Compatibility to existing formats

Member of the Helmholtz Association 25 January 2020 Slide 1

/.

JULICH

Forschungszentrum

FEATURES OF MPI 1/0

Standardized I/O API since 1997

Available in many MPI libraries

Language bindings for C and Fortran

Re-uses MPI’s concepts for the description of data
Allows portable and efficient implementation of parallel I/O operations due to support for

multiple data representations
asynchronous I/0

non-contiguous file access patterns

collective file access
MPI Info Objects

Member of the Helmholtz Association

25 January 2020

Slide 2

/.

JULICH

Forschungszentrum

PREREQUISITES

You should be familiar with MPI, especially with

Processes and Ranks An MPI program is executed by multiple processes in parallel. Processes are
identified by ranks (0, 1, ...)

Communicator Combines a group of processes and a context for communication.
Blocking and Nonblocking Provide different guarantees to the user/ different liberties to the MPI library.
P2P and Collective Communication Communication among pairs or groups of processes
Derived Datatypes Descriptions of data layouts
MPI Info Objects Key-value maps that can be used to provide hints

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 3 J Forschungszentrum

LITERATURE & ACKNOWLEDGEMENTS

Literature
» Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 3.1. June 4, 2015. URL:
https://mpi-forum.org/docs/mpi-3.1/mpi3l-report.pdf
» William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. Portable Parallel Programming with the
Message-Passing Interface. 3rd ed. The MIT Press, Nov. 2014. 336 pp. ISBN: 9780262527392
» William Gropp et al. Using Advanced MPI. Modern Features of the Message-Passing Interface. 1st ed. Nov. 2014.
392 pp. ISBN: 9780262527637
» https://www.mpi-forum.org
Acknowledgements
» Rolf Rabenseifner for his comprehensive course on MPl and OpenMP
« Marc-André Hermanns, Florian Janetzko and Alexander Trautmann for their course material on MPI and OpenMP

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 4 Forschungszentrum

LANGUAGE BINDINGS [MPI-3.1, 17, A]

C Language Bindings

#include <mpi.h>

Fortran Language Bindings
Consistent with FO8 standard; good type-checking; highly recommended

use mpi_fo8

Not consistent with standard; so-so type-checking; not recommended

o q
il use mpi

Not consistent with standard; no type-checking; strongly discouraged

include 'mpif.h'

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 5 Forschungszentrum

FORTRAN HINTS [MPI-3.1,17.1.2 - 17.1.4]

This course uses the Fortran 2008 MPI interface (use mpi_f08) whichis not available in all MPl implementations.
The Fortran 90 bindings differ from the Fortran 2008 bindings in the following points:

« All derived type arguments are instead integer (some are arrays of integer or have a non-default kind)
« Argument intentis not mandated by the Fortran 90 bindings

« The ierror argument is mandatory instead of optional

» Further details can be found in [MPI-3.1, 17.1]

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 5 Forschungszentrum

MPI4PY HINTS

All exercises can be solved using Python with the mpi4py package. The slides do not show Python syntax, so here is
a translation guide from the standard bindings to mpi4py.
« Everything lives in the MPI module (from mpid4py import MPI).
» Constants translate to attributes of that module: MPT_COMM_WORLD is MPI.COMM_WORLD.
» Central types translate to Python classes: MPI_Commis MPI.Comm.
» Functions related to point-to-point and collective communication translate to methods on MPI. Comm:
MPI_Send becomes MPI.Comm. Send.
« Functions related to 1/O translate to methods on MPI.File: MPI_File_write becomes
MPI.File.Write.

» Communication functions come in two flavors:

« high level, uses pickle to (de)serialize python objects, method names start with lower case letters, e.g.
MPI.Comm.send,

« low level, uses MPI Datatypes and Python buffers, method names start with upper case letters, e.g.
MPI.Comm.Scatter.

Seealso https://mpidpy.readthedocs.ioand the built-in Python help ().

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 7 Forschungszentrum

> 4

Part ll: File Operations

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

FILE, FILE POINTER & HANDLE [MPI-3.1,13.1]

An MPI file is an ordered collection of typed data items.

Afile pointeris an implicit offset into a file maintained by MPI.

An opaque MPI object. All operations on an open file reference the file through the file handle.

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 8 Forschungszentrum

OPENING AFILE [MPI-3.1,13.2.1]

int MPI_File_open(MPI_Comm comm, const charx filename, 1int amode, MPI_Info
B) - info, MPI_Filex fh)

MPI_File_open(comm, filename, amode, info, fh, dierror)
type (MPI_Comm), +dntent(in) :: comm

character(len=%), dntent(in) :: filename

integer, intent(in) :: amode
type (MPI_Info), dintent(in) :: i
type (MPI_File), intent(out)

B 0
integer, optional, intent(out)

nf
fh

Fo8

ierror

» Collective operation on communicator comm

» Filename must reference the same file on all processes

» Process-local files can be opened using MPI_COMM_SELF

» info object specifies additional information (MPTI_INFO_NULL for empty)

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 9 J Forschungszentrum

ACCESS MODE [MPI-3.1, 13.2.1]

amode denotes the access mode of the file and must be the same on all processes. It must contain exactly one of the

following:

MPI_MODE_RDONLY read only access
MPI_MODE_RDWR read and write access
MPI_MODE_WRONLY write only access

and may contain some of the following:
MPI_MODE_CREATE create the fileif it does not exist
MPI_MODE_EXCL errorif creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN fileis not opened elsewhere
MPI_MODE_SEQUENTIAL access to the file is sequential
MPI_MODE_APPEND file pointers are set to the end of the file

Combine using bit-wise or (| operator in C, ior intrinsic in Fortran).

Member of the Helmholtz Association 25 January 2020 Slide 10

/.

JULICH

Forschungszentrum

CLOSINGAFILE [MPI-3.1,13.2.2]

int MPI_File_close(MPI_Filex fh)

MPI_File_close(fh, derror)
type (MPI_File), intent(out) :: fh
=l integer, optional, tintent(out) :: dierror

» Collective operation
» User must ensure that all outstanding nonblocking and split collective operations associated with the file have

completed

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 11 Forschungszentrum

DELETING AFILE [MPI-3.1, 13.2.3]

'int MPI_File_delete(const charx filename, MPI_Info info)

MPI_File_delete(filename, info, ierror)
character(len=%), dntent(in) :: filename
type (MPI_Info), dntent(in) :: info

integer, optional, {intent(out) :: ierror

Fo8

» Deletes the file identified by filename
» File deletion is a local operation and should be performed by a single process

« If the file does not exist an error is raised
» If the file is opened by any process

« all further and outstanding access to the file is implementation dependent
« itis implementation dependent whether the file is deleted; if it is not, an error is raised

Member of the Helmholtz Association 25 January 2020 Slide 12

/.

JULICH

Forschungszentrum

FILE PARAMETERS

Setting File Parameters

MPI_File_set_size Setthesizeofafile [MPI-3.1, 13.2.4]
MPI_File_preallocate Preallocate disk space [MPI-3.1, 13.2.5]
MPI_File_set_1info Supplyadditional information [MPI-3.1, 13.2.8]

Inspecting File Parameters
MPI_File_get_size Sizeofafile[MPI-3.1,13.2.6]

MPI_File_get_amode Acess mode [MPI-3.1,13.2.7]

MPI_File_get_group Group of processesthat opened the file [MPI-3.1, 13.2.7]
MPI_File_get_1info Additional information associated with the file [MPI-3.1, 13.2.8]

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 13 Forschungszentrum

1/O ERROR HANDLING [MPI-3.1, 8.3, 13.7]

'int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

MPI_File_set_errhandler (file, errhandler, ierror)
type (MPI_File), dintent(in) :: file

type (MPI_Errhandler), intent(in) :: errhandler
integer, optional, {intent(out) :: ierror

FO8

The default error handler for files is MPI_ERRORS_RETURN
» Success is indicated by a return value of MPI_SUCCESS
» MPI_ERRORS_ARE_FATAL aborts the program

» Can be set for each file individually or for all files by using MPI_File_set_errhandler on a special file
handle, MPI_FILE_NULL

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 14 Forschungszentrum

FILE VIEW [MPI-3.1, 13.3]

File View

A file view determines what part of the contents of a file is visible to a process. It is defined by a displacement (given
in bytes) from the beginning of the file, an elementary datatype and a file type. The view into a file can be changed
multiple times between opening and closing.

File Types and Elementary Types are Data Types

» Can be predefined or derived

» The usual constructors can be used to create derived file types and elementary types, e.g.
« MPI_Type_indexed,
« MPI_Type_create_struct,
« MPI_Type_create_subarray

» Displacements in their typemap must be non-negative and monotonically nondecreasing

» Have to be committed before use

g JULICH

Member of the Helmholtz Association 29 January 2020 slide 15 Forschungszentrum

DEFAULT FILE VIEW [MPI-3.1, 13.3]

When newly opened, files are assigned a default view that is the same on all processes:
» Zero displacement
» File contains a contiguous sequence of bytes

» All processes have access to the entire file

g JULICH

Member of the Helmholtz Association 29 Januar y 2020 slide 16 Forschungszentrum

ELEMENTARY TYPE [MPI-3.1,13.3]

An elementary type (or etype) is the unit of data contained in a file. Offsets are expressed in multiples of etypes, file
pointers point to the beginning of etypes. Etypes can be basic or derived.

Changing the Elementary Type
E.g.etype = MPI_INT:

_ @: int 1: int 2: 1int 3:

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 17 Forschungszentrum

FILE TYPE

File Type

Afile type describes an access pattern. It can contain either instances of the etype or holes with an extent that is
divisible by the extent of the etype.

Changing the File Type

E.g. Filetypey = {(int,0), (hole, 4), (hole, 8)}, Filetype, = {(hole,0), (int, 4), (hole,8)}, ...:

File 0: 1in int

t 1: int 2: int 3:

Process 0 -- 1: int -
Process 1 - 0: 1int --

N o -

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 18 Forschungszentrum

CHANGING THE FILE VIEW [MPI-3.1, 13.3]

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
BY - WMPI_Datatype filetype, const charx datarep, MPI_Info 1info)

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, derror)
type (MPI_File), intent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1dintent(in) :: disp

type (MPI_Datatype), intent(in) :: etype, filetype

character(len=%), {dntent(in) :: datarep

type (MPI_Info), dntent(in) :: info

integer, optional, {intent(out) :: ierror

Fo8

Collective operation

» datarep and extent of etype must match

» disp, filetype and info can be distinct

» File pointers are reset to zero

» May not overlap with nonblocking or split collective operations

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 19 Forschungszentrum

DATA REPRESENTATION [MPI-3.1,13.5]

» Determines the conversion of data in memory to data on disk

» Influences the interoperability of I/O between heterogeneous parts of a system or different systems

"native"

Data is stored in the file exactly as it is in memory

No loss of precision
No overhead

- On heterogeneous systems loss of transparent interoperability

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 20 Forschungszentrum

DATA REPRESENTATION [MPI-3.1,13.5]

Data is stored in implementation-specific format

Can be used in a homogeneous and heterogeneous environment
Implementation will perform conversions if necessary
- Canincur overhead

- Not necessarily compatible between different implementations

"external32"

Data is stored in standardized data representation (big-endian IEEE)

Can be read/written also by non-MPI programs

- Precision and I/O performance may be lost due to type conversions between native and external32
representations

- Not available in all implementations

DATA ACCESS

Three orthogonal aspects

1. Synchronism POSIX read () and write ()

1. Blocking
2. Nonblocking These are blocking, noncollective operations with

3. Split collective individual file pointers.

2. Coordination
1. Noncollective
2. Collective

3. Positioning

1. Explicit offsets
2. Individualfile pointers
3. Shared file pointers

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 21 Forschungszentrum

SYNCHRONISM

Blocking I/O

Blocking I/O routines do not return before the operation is completed.

Nonblocking 1/0

» Nonblocking I/O routines do not wait for the operation to finish
» Aseparate completion routine is necessary [MPI-3.1, 3.7.3, 3.7.5]

» The associated buffers must not be used while the operation is in flight

Split Collective
» “Restricted” form of nonblocking collective
» Buffers must not be used while in flight
» Does not allow other collective accesses to the file while in flight

» begin and end must be used from the same thread

Member of the Helmholtz Association 25 January 2020 Slide 22

/.

JULICH

Forschungszentrum

COORDINATION

The completion depends only on the activity of the calling process.

Collective
» Completion may depend on activity of other processes

» Opens opportunities for optimization

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 23 Forschungszentrum

POSITIONING [MPI-3.1,13.4.1 - 13.4.4]

Explicit Offset

» No file pointeris used

» File position for access is given directly as function argument

Individual File Pointers

» Each process has its own file pointer

» After access, pointer is moved to first etype after the last one accessed

Shared File Pointers
» All processes share a single file pointer
» All processes must use the same file view
» Individual accesses appear as if serialized (with an unspecified order)

» Collective accesses are performed in order of ascending rank

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 24 Forschungszentrum

Combine the prefix MPI_F- le_ with any of the following suffixes:

positioning

synchronism

coordination

noncollective

collective

explicit offsets

blocking

read_at,write_at

read_at_all,write_at_all

nonblocking

iread_at,iwrite_at

iread_at_all,iwrite_at_all

split collective

N/A

read_at_all_begin,
read_at_all_end,
write_at_all_begin,
write_at_all_end

individual file
pointers

blocking

read,write

read_all,write_all

nonblocking

iread,iwrite

iread_all,iwrite_all

split collective

N/A

read_all_begin,read_all_end,
write_all_begin,write_all_end

shared file pointers

blocking

read_shared,write_shared

read_ordered,write_ordered

nonblocking

iread_shared, iwrite_shared

N/A

split collective

N/A

read_ordered_begin,
read_ordered_end,
write_ordered_begin,
write_ordered_end

WRITING

blocking, noncollective, explicit offset [MPI-3.1, 13.4.2]

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const voidx buf, -{int
B9 - count, MPI_Datatype datatype, MPI_Status #*status)

MPI_File_write_at(fh, offset, buf, count, datatype, status, derror)
type (MPI_File), intent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1dintent(in) :: offset

type(x), dimension(..), intent(in) :: buf

integer, intent(in) :: count
type (MPI_Datatype), 1intent(in)

datatype
integer, optional, intent(out) i

error

FO8

» Starting offset for access is explicitly given

» Nofile pointer is updated

» Writes count elements of datatype from memory starting at buf
» Typesig datatype = Typesigetype ... Typesig etype

» Writing past end of file increases the file size ‘ ' JULICH

Member of the Helmholtz Association 29 January 2020 Slide 26 Forschungszentrum

EXAMPLE

blocking, noncollective, explicit offset
ProcessOcallsMPI_File_write_at(offset = 1, count = 2):

File (0] 1 2 3 4 5 6 7 8 9

ZENZEN: M
el c AN ZENZEN G
e E AN ENNE NN E
pesel BN AN NN : 0

Member of the Helmholtz Association 29 January 2020 slide 27 J

JULICH

Forschungszentrum

WRITING

blocking, noncollective, individual [MPI-3.1, 13.4.3]

int MPI_File_write(MPI_File fh, const voidx buf, int count, MPI_Datatype
By - datatype, MPI_Statusx status)

MPI_File_write(fh, buf, count, datatype, status, -derror)
type (MPI_File), intent(in) :: fh

type(x), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype

type (MPI_Status) :: status

integer, optional, {intent(out) :: ierror

Fo8

» Starts writing at the current position of the individual file pointer

» Moves the individual file pointer by the count of etypes written

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 28 J Forschungszentrum

EXAMPLE

blocking, noncollective, individual
With its file pointer at element 1, process 1 callsMPI_File_write(count = 2):

File (0] 1 2 3 4 5 6 7 8 9

el s MM EE:HE: N

/,\J
Process 1 .0..%..%..

e EN NN EN: NN

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 29 Forschungszentrum

WRITING

nonblocking, noncollective, individual [MPI-3.1, 13.4.3]

int MPI_File_iwrite(MPI_File fh, const voidx buf, int count, MPI_Datatype
B9 - datatype, MPI_Request* request)

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)
type (MPI_File), intent(in) :: fh

type(x), dimension(..), intent(in) :: buf

integer, intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype

type (MPI_Request), intent(out) :: request

integer, optional, intent(out) ierror

Fo8

» Starts the same operation as MPI_File_wr1i te but does not wait for completion

» Returns a request object that is used to complete the operation

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 30 J Forschungszentrum

WRITING

blocking, collective, individual [MPI-3.1, 13.4.3]

int MPI_File_write_all(MPI_File fh, const void* buf, int count,

~ MPI_Datatype datatype, MPI_Statusx status)

MPI_File_write_all(fh, buf, count, datatype, status, derror)

type (MPI_File), intent(in) :: fh

type(x), dimension(..), intent(in) :: buf
integer, intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype
type (MPI_Status) :: status

integer, optional, {intent(out) :: ierror

FO8

» Same signature asMPI_File_write, but collective coordination
» Each process uses its individual file pointer
» MPI can use communication between processes to funnel I/0

Member of the Helmholtz Association 25 January 2020 Slide 31

/.

JULICH

Forschungszentrum

EXAMPLE

blocking, collective, individual

» With its file pointer at element 1, process 0 calls MPI_File_write_all(count = 1),
» With its file pointer at element 0, process 1 calls MPI_File_write_all(count = 2),
» With its file pointer at element 2, process 2 calls MPI_File_write_all(count 0):

File (0] 1 2 3 4 5 6 7 8 9

/_\J
Process @ O..%..2ll3-

/\J
Process 1 .%..%..2..

T
Process 2 ..0..1..2.-
‘JJULICH

Member of the Helmholtz Association 29 January 2020 Slide 32 Forschungszentrum

WRITING

split-collective, individual [MPI-3.1, 13.4.5]

int MPI_File_write_all_begin(MPI_File fh, const voidx buf, int count,
B9 - MPI_Datatype datatype)

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)

type (MPI_File), intent(in) :: fh

type(x), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type (MPI_Datatype), 1intent(in)

datatype
integer, optional, intent(out) i

error

FO8

» Same operationas MPI_File_write_all, butsplit-collective

» statusisreturned by the corresponding end routine

Member of the Helmholtz Association 25 January 2020 Slide 33

g JULICH

Forschungszentrum

WRITING

split-collective, individual [MPI-3.1, 13.4.5]

int MPI_File_write_all_end(MPI_File fh, const voidx buf, MPI_Statusx
B9 - status)

MPI_File_write_all_end(fh, buf, status, dierror)
type (MPI_File), intent(in) :: fh

type(x), dimension(..), intent(in) :: buf

type (MPI_Status) :: status

integer, optional, {intent(out) :: ierror

Fo8

» buf argument must match corresponding begin routine

Member of the Helmholtz Association 25 January 2020 Slide 34

/.

JULICH

Forschungszentrum

EXAMPLE

blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
» process 0 callsMPI_File_write_shared(count
» process 2 callsMPI_File_write_shared(count

B IS fEEEEEEEEE
_IIIIIEIIII-
_IEIIIIIIII-

_IIIIIIIIEI-
‘JJULICH

Forschungszentrum

3)’
2):

Member of the Helmholtz Association 25 January 2020 Slide 35

EXAMPLE

blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
» process 0 callsMPI_File_write_shared(count
» process 2 callsMPI_File_write_shared(count

B IS EEEEEEEEE
_IIIIIEIIII-
_IEIIIIIIII-

_IIIIIIIIEI-
‘JJULICH

Forschungszentrum

3)’
2):

Member of the Helmholtz Association 25 January 2020 Slide 35

EXAMPLE

blocking, collective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,

« processOcallsMPI_File_write_ordered(count = 1),
« process1lcallsMPI_File_write_ordered(count = 2),
« process2 callsMPI_File_write_ordered(count = 3):

L Fle 0 123 4.5 67 8 9
I EEEEEEEEEE
EEEEm R EEEEEEEEE
BN G EEEEEEEE S

READING

blocking, noncollective, individual [MPI-3.1, 13.4.3]

int MPI_File_read(MPI_File fh, void* buf, int count, MPI_Datatype datatype,
B9 - MPI_Statusx status)

MPI_File_read(fh, buf, count, datatype, status, derror)
type (MPI_File), intent(in) :: fh

type(x), dimension(..) :: buf

integer, intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype

type (MPI_Status) :: status

integer, optional, {intent(out) :: ierror

FO8

» Starts reading at the current position of the individual file pointer

» Reads up to count elements of datatype into the memory starting at buf

» status indicates how many elements have been read

» If status indicates less than count elements read, the end of file has been reached

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 37 Forschungszentrum

FILE POINTER POSITION [MPI-3.1, 13.4.3]

'int MPI_File_get_position(MPI_File fh, MPI_Offsetx offset)

MPI_File_get_position(fh, offset, dierror)

type (MPI_File), intent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1dintent(out) :: offset
integer, optional, {intent(out) :: ierror

Fo8

Returns the current position of the individual file pointer in units of etype
» Value can be used fore.g.

« return to this position (via seek)

« calculate a displacement

» MPI_File_get_position_shared queries the position of the shared file pointer

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 38 Forschungszentrum

SEEKING TO AFILE POSITION [MPI-3.1, 13.4.3]

'int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

MPI_File_seek(fh, offset, whence, ierror)

type (MPI_File), intent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1dintent(in) :: offset
integer, intent(in) :: whence

integer, optional, {intent(out) :: ierror

FO8

» whence controls how the file pointer is moved:

MPI_SEEK_SET sets the file pointertooffset
MPI_SEEK_CUR offset isrelative to the current value of the pointer
MPI_SEEK_END offsetisrelative tothe end of the file

offset can be negative but the resulting position may not lie before the beginning of the file

MPI_File_seek_shared manipulates the shared file pointer

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 39 Forschungszentrum

CONVERTING OFFSETS [MPI-3.1,13.4.3]

I'int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offsetx*
-~ disp)
@)

MPI_File_get_byte_offset(fh, offset, disp, ierror)
type (MPI_File), intent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1intent(in)
integer (kind=MPI_OFFSET_KIND), 1intent(out)
integer, optional, intent(out)

offset
¢ disp

Fo8

:: dierror

Converts a view relative offset (in units of etype) into a displacement in bytes from the beginning of the file

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 40 J

Forschungszentrum

CONSISTENCY [MPI-3.1,13.6.1]

If a set of operations is sequentially consistent, they behave as if executed in some serial order. The exact order is
unspecified.

» To guarantee sequential consistency, certain requirements must be met

» Requirements depend on access path and file atomicity

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 41 Forschungszentrum

ATOMIC MODE [MPI-3.1, 13.6.1]

Requirements for sequential consistency

Same file handle: always sequentially consistent
File handles from same open: always sequentially consistent
File handles from different open: not influenced by atomicity, see nonatomic mode

» Atomic mode is not the default setting

» Can lead to overhead, because MPI library has to uphold guarantees in general case

B9 int MPI_File_set_atomicity(MPI_File fh, tint flag)

MPI_File_set_atomicity(fh, flag, dierror)
type (MPI_File), intent(in) :: fh
logical, intent(in) :: flag

integer, optional, {intent(out) :: ierror

FO8

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 42 Forschungszentrum

NONATOMIC MODE [MPI-3.1,13.6.1]

Requirements for sequential consistency

Same file handle: operations must be either nonconcurrent, nonconflicting, or both

File handles from same open: nonconflicting accesses are sequentially consistent, conflicting accesses have to be
protected using MPI_File_sync

File handles from different open: all accesses must be protected using MPI_File_sync

Conflicting Accesses

Two accesses are conflicting if they touch overlapping parts of a file and at least one is writing.
int MPI_File_sync(MPI_File fh)

MPI_File_sync(fh, derror)
type (MPI_File), intent(in) :: fh
=Ml integer, optional, 1intent(out) :: dierror

(W
@) JULICH
29 January 2020 Slide 43 J Forschungszentrum

Member of the Helmholtz Association

NONATOMIC MODE [MPI-3.1,13.6.1]

The Sync-Barrier-Sync construct

// writing access sequence through /) ...

- one file handle MPI_File_sync(fhl);
MPI_File_sync(fho); MPI_Barrier (MPI_COMM_WORLD) ;
MPI_Barrier (MPI_COMM_WORLD) ; MPI_File_sync(fhl);
MPI_File_sync(fho); // access sequence to the same

N/ - -~ file through a different file
By - handle

» MPI_File_syncis used to delimit sequences of accesses through different file handles

» Sequences that contain a write access may not be concurrent with any other access sequence

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 43 Forschungszentrum

LOGIN & PROGRAMMING ENVIRONMENT

JURECA Login MPI Infrastructure
. In aterminal on your PC, enter:
$ ssh namel@jureca.fz-juelich.de mpicc

2. Load modules and activate the training project: Fortran
mpif90

$ module load intel-para
$ jutil env activate -p training2000
- -A training2060

Course Material

Copy the course material by running:

$ SPROJECT/mpi-io/copy.sh

Member of the Helmholtz Association 25 January 2020 Slide 44

mpicxx

Process startup

$ srun -n <numprocs> <program>

g JULICH

Forschungszentrum

RUNNING PARALLEL PROGRAMS ON JURECA

1. Start an interactive session To start an application with n processes, submit the
following job script with

$ salloc --reservation=pario

~ —-nodes=1 --time=08:00:00

sbatch --reservation=pario <script>

2. Wait for the prompt... #1/bin/bash
3. Start applications with n processes #SBATCH --nodes=1

§ srun --ntasks=<n> #SBATCH --ntasks=<n>
< Licats _> #SBATCH --ntasks-per-node=<n>
- capptication #SBATCH --time=00:05:00

module load intel-para
srun <application>

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 45 Forschungszentrum

EXERCISE STRATEGIES

» Do not have to solve all exercises, one per section would be good

» Exercise description tells you what MPI functions/OpenMP directives to use

» Work in pairs on harder exercises

» If you get stuck

« askus
« peek at solution

» Makefileisincluded

exercises/mpi-io/{C|C++|Fotran|Python}/:

. Most of the algorithm is there, you add MPI
hard Almost empty files you add algorithm and MPI
solutions Fully solved exercises, if you are completely stuck or for comparison

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 46 Forschungszentrum

EXERCISES

1.1 Writing and Reading Data

Inthefile rank_jo.{c|cxx|f90|py} write a function write_rank that takes a communicator as its
only argument and does the following:

» Each process writes its own rank in the communicator to a common file rank. dat.
» Theranks should be in order in the file: 0...n — 1.

Use: MPI_File_open,MPI_File_set_errhandler,MPI_File_set_view,
MPI_File_write_ordered,MPI_File_sync,MPI_File_close

Exercise 1 - Data Access

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 47 J Forschungszentrum

EXERCISES

1.2 Accessing Parts of Files

In the file rank_io.{c|cxx | f90| py} write a function read_rank that takes a communicator as its only
argument and does the following:

» The processes read the integers in the file in reverse order, i.e. process 0 reads the last entry, process 1
reads the one before, etc.
» Each process returns the rank number it has read from the function.

Careful: This program might be run on a communicator with a different number of processes. If there are more
processes than entries in the file, processes with ranks larger than or equal to the number of file entries should
return MPI_PROC_NULL.

Use: MPI_File_seek,MPI_File_get_position

Exercise 1 - Data Access

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 48 Forschungszentrum

EXERCISES

1.3 Phone Book

The file phonebook. dat contains several records of the following form:

struct dbentry { type :: dbentry
int key; integer :: key
int room_number; integer :: room_number
int phone_number; integer :: phone_number
char name[200]; w character (1len=200) :: name
v B =l end type

In the file phonebook. {c|cxx | f90 | py} write a function Look_up_by_room_number that uses MPI
I/0 to find an entry by room number. Return a bool or Logical to indicate whether an entry has been found
and fill an entry via pointer/intent out argument.

Use: MPI_File_read

Exercise 1 - Data Access

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 49 J Forschungszentrum

> 4

Part lll: The Info Object

@) JULICH
Member of the Helmholtz Association J Forschungszentrum

THE INFO OBJECT [MPI-3.1, 9]

A Gentle Reminder

Used to pass hints for optimization to MPI
» Consists of (key, value) pairs, where both key and value are strings
» Each key must appear only once
» MPI_INFO_NULL can be used in place of an actual info object
» Keys must not be larger than MPI_MAX_INFO_KEY
» Values must not be larger than MPI_MAX_INFO_VAL

Info Object API

MPI_Info_create,MPI_Info_dup,MPI_Info_free,
MPI_Info_set,MPI_Info_delete,
MPI_Info_get,MPI_Info_get_valuelen,MPI_Info_get_nkeys,MPI_Info_get_nthkey

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 50 J Forschungszentrum

INFO OBJECTS FORI/O [MPI-3.1,13.2,13.2]

Info objects can be associated with files that MPI 1/0 operates on using several mechanisms:

» When opening a file: the info object is passed to the MPI_F1ile_open routine
» While the file is open:

« When setting a file view usingMPI_File_set_view
« Explicitly usingMPI_File_set_info

» Whendeleting afile usingMPI_File_delete
» Globally using a ROMIO hint file

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 51 Forschungszentrum

FILE INFO OBJECT ACCESSORS [MPI-3.1,13.2.8]

u int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_File_set_info(fh, info, dierror)

type (MPI_File), intent(in) :: fh

type (MPI_Info), dntent(in) :: info
integer, optional, {intent(out) :: ierror

U int MPI_File_get_info(MPI_File fh, MPI_Infox info)

c Jre |

MPI_File_get_1info(fh, info, dierror)

type (MPI_File), intent(in) :: fh

type (MPI_Info), dintent(out) :: info
integer, optional, {intent(out) :: ierror

FO8

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 52 Forschungszentrum

PASSING HINTS USING A FILE

Specify Hint File via Environment Variable

$ export ROMIO_HINTS=<absolute path>/hintfile

» Environment variable must be exported to the compute nodes. Use appropriate mechanisms provided by
process starters like mpiexec or runjob.
» Hints are used for all MPI 1/0 operations in the application through

« direct use of MPI 1/O routines
« use of libraries that use MPI 1/0

Example Hint File Content

collective buffering true
cb_buffer_size 33554432
cb_block_size 4194304

@) JULICH
29 January 2020 Slide 53 J Forschungszentrum

Member of the Helmholtz Association

RESERVED KEYS FOR1/O [MPI-3.1, 13.2.8]

» An MPIl implementation is not required to support these hints
» If a hint is supported by an implementation, it must behave as described by the standard

» Additional keys may be supported

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54 Forschungszentrum

RESERVED KEYS FOR1/O [MPI-3.1, 13.2.8]

filename: string implementation dependent

Can be used to inspect the file name of an open file.

file_perm: string same, implementation dependent

Specifies the file permissions to set on file creation.

access_style: [string] comma separated

Specifies the manner in which the file will be accessed until it is closed or this info key is changed. Valid list
elements are:

« read_once » sequential
« write_once » reverse_sequential
» read_mostly « random

» write_mostly

@) JULICH
29 January 2020 Slide 54 J Forschungszentrum

Member of the Helmholtz Association

RESERVED KEYS FOR1/O [MPI-3.1, 13.2.8]

nb_proc: integer

Specifies how many parallel processes usually run the application that accesses this file.

num_io_nodes: ‘integer

Specifies the number of 1/0 devices in the system.

io_node_Tlist: [string] comma separated, same, implementation dependent

Specifies a list of I/O devices that should be used to store the file.

Forschungszentrum

g JULICH

Member of the Helmholtz Association 25 January 2020 Slide 54

RESERVED KEYS FOR1/O [MPI-3.1, 13.2.8]

chunked: [integer] comma separated, same

Specifies that the file consists of a multidimensional array that is often accessed by subarrays. List entries are array
dimensions in order of decreasing significance.

chunked_-item: [integer] comma separated, same

Specifies the size of one array entry in bytes.

chunked_size: [integer] comma separated, same

Specifies the dimensions of the subarrays.

@) JULICH
29 January 2020 Slide 54 J Forschungszentrum

Member of the Helmholtz Association

RESERVED KEYS FOR1/O [MPI-3.1, 13.2.8]

collective_buffering: boolean

Specifies whether the application may benefit from collective buffering.

cb_nodes: integer

Specifies the number of target nodes to be used for collective buffering.

cb_block_size: dinteger

Specifies the block size to be used for collective buffering. Data access happens in chunks of this size.

cb_buffer_size: dinteger

Specifies the size of the buffer space that can be used on each target node.

@) JULICH
29 January 2020 Slide 54 J Forschungszentrum

Member of the Helmholtz Association

RESERVED KEYS FOR1/O [MPI-3.1, 13.2.8]

striping_factor: integer

Specifies the number of 1/0 devices that the file should be striped across. Relevant only on file creation.

striping_unit: integer same

Specifies the striping unit - the amount of consecutive data assigned to one I/0 device - to be used for this file.
Only relevant on file creation.

g JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54 Forschungszentrum

GOOD CHOICES FOR GPFS

default: automatic

romio_ds_write: string

Specifies whether to use data sieving for write access. Good choice: enable

default: automatic

romio_ds_read: string

Specifies whether to use data sieving for read access. Good choice: automatic

cb_buffer_size: dinteger default: 16777216
Specifies the size of the buffer space that can be used on each target node. Good choice: 33554432

Default keys already seem to be a good setting

Collective buffering is switched on by default (collective_bufferingisignored, but
romio_cb_read/romio_cb_write are available)

Data sieving is only important for writing with shared file pointers and for small amounts of data.
« cb_nodes is set automatically and cannot be changed by the user

g JULICH

Member of the Helmholtz Association 29 January 2020 slide 55 Forschungszentrum

COLOPHON

This document was typeset using
+» LualTgX and a host of macro packages,
» Adobe Source Sans Pro for body text and headings,
» Adobe Source Code Pro forlistings,
+ TeX Gyre Pagella Math for mathematical formulae,

« icons from Font Awesome (.

@) JULICH
29 January 2020 Slide 56 J Forschungszentrum

Member of the Helmholtz Association

