PARALLEL 1/O WITH MPI

29 January 2020 | Benedikt Steinbusch | Jiilich Supercomputing Centre

lJ JULICH

Forschungszentrum

Member of the Helmholtz Association

= >

Part |: Introduction

lJ JULICH

Forschungszentrum

Member of the Helmholtz Association

MPI 1/O FACT SHEET

Data model asequence of typed data items
Self describing no
Full control of file content maybe

Use cases
+ Implementing higher level formats
+ Compatibility to existing formats
Member of the Helmholtz Association 29 January 2020 Slide 1

/.

JULICH

Forschungszentrum

FEATURES OF MPI1 1/0

Standardized I/O API since 1997

Available in many MPI libraries

Language bindings for C and Fortran

Re-uses MPI’s concepts for the description of data
Allows portable and efficient implementation of parallel I/O operations due to support for

multiple data representations
asynchronous 1/0

non-contiguous file access patterns

collective file access
MPI Info Objects

Member of the Helmholtz Association

29 January 2020

Slide 2

/.

JULICH

Forschungszentrum

PREREQUISITES

You should be familiar with MPI, especially with

Processes and Ranks An MPI program is executed by multiple processes in parallel. Processes are
identified by ranks (0, 1, ...)

Communicator Combines a group of processes and a context for communication.
Blocking and Nonblocking Provide different guarantees to the user / different liberties to the MPI library.
P2P and Collective Communication Communication among pairs or groups of processes
Derived Datatypes Descriptions of data layouts
MPI Info Objects Key-value maps that can be used to provide hints

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide3 J Forschungszentrum

LITERATURE & ACKNOWLEDGEMENTS

Literature
« Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 3.1. June 4,2015. URL:
https://mpi-forum.org/docs/mpi-3.1/mpi31l-report.pdf
+ William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. Portable Parallel Programming with the
Message-Passing Interface. 3rd ed. The MIT Press, Nov. 2014. 336 pp. 1ISBN: 9780262527392
« William Gropp et al. Using Advanced MPI. Modern Features of the Message-Passing Interface. 1st ed. Nov. 2014.
392 pp. ISBN: 9780262527637
« https://www.mpi-forum.org
Acknowledgements
« Rolf Rabenseifner for his comprehensive course on MPl and OpenMP
« Marc-André Hermanns, Florian Janetzko and Alexander Trautmann for their course material on MPl and OpenMP

lJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 4 Forschungszentrum

https://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org

LANGUAGE BINDINGS [MPI-3.1, 17, Al

C Language Bindings

#include <mpi.h>

Fortran Language Bindings

Consistent with FO8 standard; good type-checking; highly recommended

use mpi_fo8

Not consistent with standard; so-so type-checking; not recommended

(=] .
(Al use mpi

Not consistent with standard; no type-checking; strongly discouraged

include 'mpif.h'

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 5 Forschungszentrum

FORTRAN HINTS [MPI-3.1,17.1.2 - 17.1.4]

This course uses the Fortran 2008 MPI interface (use mp1i_f08) which is not available in all MPI implementations.
The Fortran 90 bindings differ from the Fortran 2008 bindings in the following points:

« All derived type arguments are instead integer (some are arrays of integer or have a non-default kind)
« Argument intent is not mandated by the Fortran 90 bindings

« The ierror argument is mandatory instead of optional

« Further details can be found in [MPI-3.1, 17.1]

l) JULICH

Member of the Helmholtz Association 29 January 2020 Forschungszentrum

Slide 6

MPI4PY HINTS

All exercises can be solved using Python with the mpi4py package. The slides do not show Python syntax, so here is
a translation guide from the standard bindings to mpi4py.

« Everything lives in the MPT module (from mpi4py +import MPI).

« Constants translate to attributes of that module: MPI_COMM_WORLD is MPI.COMM_WORLD.

« Central types translate to Python classes: MPI_Comm is MPI . Comm.

« Functions related to point-to-point and collective communication translate to methods on MPI . Comm:
MPI_Send becomes MPI.Comm. Send.

Functions related to I/O translate to methods on MPI.File: MPI_F1ile_write becomes
MPI.File.Write.

« Communication functions come in two flavors:

« high level, uses pickle to (de)serialize python objects, method names start with lower case letters, e.g.
MPI.Comm.send,

« low level, uses MPI Datatypes and Python buffers, method names start with upper case letters, e.g.
MPI.Comm.Scatter.

Seealso https://mpi4py.readthedocs.io and the built-in Python help ().

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 7 Forschungszentrum

https://mpi4py.readthedocs.io

= >

Part ll: File Operations

Member of the Helmholtz Association J Forschungszentru

FILE, FILE POINTER & HANDLE [MPI-3.1, 13.1]

An MPI file is an ordered collection of typed data items.

Afile pointer is an implicit offset into a file maintained by MPI.

An opaque MPI object. All operations on an open file reference the file through the file handle.

lJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 8 Forschungszentrum

OPENING AFILE [MPI-3.1,13.2.1]

int MPI_File_open(MPI_Comm comm, const charx filename, +int amode, MPI_Info
N - info, MPI_Filex fh)

MPI_File_open(comm, filename, amode, info, fh, dierror)
type (MPI_Comm), +intent(in) :: comm

character(len=x), intent(in) :: filename

integer, 1intent(in) :: amode

type (MPI_Info), dintent(in) :: info

type (MPI_File), tintent(out) :: fh

integer, optional, -+intent(out) :: derror

FO8

Collective operation on communicator comm

« Filename must reference the same file on all processes

+ Process-local files can be opened using MPI_COMM_SELF

« info object specifies additional information (MPI_INFO_NULL for empty)

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 9 Forschungszentrum

ACCESS MODE [MPI-3.1, 13.2.1]

amode denotes the access mode of the file and must be the same on all processes. It must contain exactly one of the

following:

MPI_MODE_RDONLY read only access

MPI_MODE_RDWR read and write access
MPI_MODE_WRONLY write only access

and may contain some of the following:

MPI_MODE_CREATE create the fileif it does not exist
MPI_MODE_EXCL error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file is not opened elsewhere
MPI_MODE_SEQUENTIAL access to thefileis sequential
MPI_MODE_APPEND file pointers are set to the end of the file
Combine using bit-wise or (| operatorin C, ior intrinsic in Fortran).

Member of the Helmholtz Association 29 January 2020 Slide 10

/.

JULICH

Forschungszentrum

CLOSING AFILE [MPI-3.1,13.2.2]

'int MPI_File_close(MPI_Filex fh)

MPI_File_close(fh, ierror)
type (MPI_File), dintent(out) :: fh
=8 integer, optional, dintent(out) :: derror

« Collective operation

« User must ensure that all outstanding nonblocking and split collective operations associated with the file have
completed

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 11 Forschungszentrum

DELETING A FILE [MPI-3.1,13.2.3]

'int MPI_File_delete(const charx filename, MPI_Info info)

MPI_File_delete(filename, info, derror)
character (len=x), intent(in) :: filename
type (MPI_Info), +intent(in) :: info

integer, optional, {intent(out) :: derror

FO8

.

Deletes the file identified by filename

File deletion is a local operation and should be performed by a single process

If the file does not exist an error is raised

If the file is opened by any process

« all further and outstanding access to the file is implementation dependent
« itisimplementation dependent whether the file is deleted; if it is not, an error is raised

Member of the Helmholtz Association 29 January 2020 Slide 12

/.

JULICH

Forschungszentrum

FILE PARAMETERS

Setting File Parameters

MPI_File_set_size Setthesizeofafile [MPI-3.1,13.2.4]
MPI_File_preallocate Preallocate disk space [MPI-3.1, 13.2.5]
MPI_File_set_info Supplyadditionalinformation [MPI-3.1,13.2.8]

Inspecting File Parameters
MPI_File_get_size Sizeofafile [MPI-3.1,13.2.6]

MPI_File_get_amode Acess mode [MPI-3.1,13.2.7]

MPI_File_get_group Group of processes that opened the file [MPI-3.1, 13.2.7]
MPI_File_get_info Additional information associated with the file [MPI-3.1, 13.2.8]

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 13 Forschungszentrum

1/O ERROR HANDLING [MPI-3.1, 8.3, 13.7]

'int MPI_File_set_errhandler (MPI_File file, MPI_Errhandler errhandler)

MPI_File_set_errhandler(file, errhandler, ierror)
type (MPI_File), +intent(in) :: file

type (MPI_Errhandler), intent(in) :: errhandler
integer, optional, intent(out) :: dierror

FO8

The default error handler for files is MPTI_ERRORS_RETURN
« Success is indicated by a return value of MPI_SUCCESS
+ MPI_ERRORS_ARE_FATAL aborts the program

Can be set for each file individually or for all files by using MPI_F-ile_set_errhandler on aspecial file
handle, MPI_FILE_NULL

lJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 14 Forschungszentrum

FILE VIEW [MPI-3.1, 13.3]

File View
Afile view determines what part of the contents of a file is visible to a process. It is defined by a displacement (given

in bytes) from the beginning of the file, an elementary datatype and a file type. The view into a file can be changed
multiple times between opening and closing.

File Types and Elementary Types are Data Types

« Can be predefined or derived

+ The usual constructors can be used to create derived file types and elementary types, e.g.
+ MPI_Type_indexed,
« MPI_Type_create_struct,
+ MPI_Type_create_subarray

+ Displacements in their typemap must be non-negative and monotonically nondecreasing
+ Have to be committed before use

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 15 Forschungszentrum

DEFAULT FILE VIEW [MPI-3.1, 13.3]

When newly opened, files are assigned a default view that is the same on all processes:
« Zero displacement
« File contains a contiguous sequence of bytes
« All processes have access to the entire file

lJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 16 Forschungszentrum

ELEMENTARY TYPE [MPI-3.1, 13.3]

An elementary type (or etype) is the unit of data contained in a file. Offsets are expressed in multiples of etypes, file
pointers point to the beginning of etypes. Etypes can be basic or derived.

E.g.etype = MPI_INT:
_-----
| Process @ ©: int 1: int 2: int 3: int
_-----
_ 0: int 1: int 2: int 3: 1int

IJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 17 Forschungszentrum

FILE TYPE [MPI-3.1, 13.3]

File Type

Afile type describes an access pattern. It can contain either instances of the etype or holes with an extent that is
divisible by the extent of the etype.

Changing the File Type

E.g. Filetype, = {(int,0), (hole, 4), (hole,8)}, Filetype; = {(hole,0), (int,4), (hole,8)}, ...:

File 0: int 1: int 2: int 3: int ~---
Process 0 0: int -- 1: 1int -

Process 1 - 0: 1int --
N - - N

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 18 Forschungszentrum

CHANGING THE FILE VIEW [MPI-3.1, 13.3]

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
B9 - MPI_Datatype filetype, const charx datarep, MPI_Info 1info)

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, 1ierror)
type (MPI_File), dintent(in) :: fh

integer (kind=MPI_OFFSET_KIND), intent(in) :: disp

type (MPI_Datatype), intent(in) :: etype, filetype

character (len=x), intent(in) :: datarep

type (MPI_Info), +intent(in) :: info

integer, optional, intent(out) :: derror

FO8

Collective operation

« datarep and extent of etype must match

« disp, filetype and info can be distinct

File pointers are reset to zero

« May not overlap with nonblocking or split collective operations

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 19 Forschungszentrum

DATA REPRESENTATION [MPI-3.1, 13.5]

+ Determines the conversion of data in memory to data on disk
« Influences the interoperability of /O between heterogeneous parts of a system or different systems

"native"

Data is stored in the file exactly as it is in memory
No loss of precision
No overhead
- On heterogeneous systems loss of transparent interoperability

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 20 Forschungszentrum

DATA REPRESENTATION [MPI-3.1, 13.5]

Data is stored in implementation-specific format
Can be used in a homogeneous and heterogeneous environment
Implementation will perform conversions if necessary
- Canincur overhead

- Not necessarily compatible between different implementations

"external32"

Data is stored in standardized data representation (big-endian IEEE)

Can be read/written also by non-MPI programs

- Precision and /0O performance may be lost due to type conversions between native and external32
representations

- Not available in all implementations

DATA ACCESS

Three orthogonal aspects

1. Synchronism POSIX read () andwrite()

1. Blockin
2. Nonblofking These are blocking, noncollective operations with

3. Split collective individual file pointers.
2. Coordination

1. Noncollective

2. Collective
3. Positioning

1. Explicit offsets

2. Individual file pointers

3. Shared file pointers

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 21 Forschungszentrum

SYNCHRONISM

Blocking 1/0

Blocking /0 routines do not return before the operation is completed.

Nonblocking I/O

+ Nonblocking 1/0 routines do not wait for the operation to finish
+ Aseparate completion routine is necessary [MPI-3.1,3.7.3, 3.7.5]
« The associated buffers must not be used while the operation is in flight

Split Collective
«+ “Restricted” form of nonblocking collective
« Buffers must not be used while in flight
+ Does not allow other collective accesses to the file while in flight
» begin and end must be used from the same thread

Member of the Helmholtz Association 29 January 2020 Slide 22

/.

JULICH

Forschungszentrum

COORDINATION

The completion depends only on the activity of the calling process.

Collective

« Completion may depend on activity of other processes
+ Opens opportunities for optimization

@) JULICH
29 January 2020 Slide 23 J Forschungszentrum

Member of the Helmholtz Association

POSITIONING [MPI-3.1,13.4.1 - 13.4.4]

Explicit Offset

+ No file pointer is used
« File position for access is given directly as function argument

Individual File Pointers

+ Each process has its own file pointer
« After access, pointer is moved to first etype after the last one accessed

Shared File Pointers
« All processes share a single file pointer
« All processes must use the same file view
« Individual accesses appear as if serialized (with an unspecified order)
« Collective accesses are performed in order of ascending rank

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 24 Forschungszentrum

Combine the prefix MPI_F1ile_ with any of the following suffixes:

positioning

synchronism

coordination

noncollective

collective

explicit offsets

blocking

read_at,write_at

read_at_all,write_at_all

nonblocking

iread_at,iwrite_at

iread_at_all,iwrite_at_all

split collective

N/A

read_at_all_begin,
read_at_all_end,
write_at_all_begin,
write_at_all_end

individual file
pointers

blocking

read,write

read_all,write_all

nonblocking

iread,iwrite

iread_all,iwrite_all

split collective

N/A

read_all_begin,read_all_end,
write_all_begin,write_all_end

shared file pointers

blocking

read_shared,write_shared

read_ordered,write_ordered

nonblocking

iread_shared, iwrite_shared

N/A

split collective

N/A

read_ordered_begin,
read_ordered_end,
write_ordered_begin,
write_ordered_end

WRITING

blocking, noncollective, explicit offset [MPI-3.1, 13.4.2]

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void* buf, int

-~ count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at(fh, offset, buf, count, datatype, status, 1ierror)

type (MPI_File), dintent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1intent(in) :: offset
type(*x), dimension(..), intent(in) :: buf

integer, 1intent(in) :: count
type (MPI_Datatype), intent(in)
integer, optional, +intent(out)

datatype

lerror

FO8

Starting offset for access is explicitly given

+ Nofile pointer is updated

» Writes count elements of datatype from memory starting at buf
« Typesig datatype = Typesigetype ... Typesig etype

« Writing past end of file increases the file size

Member of the Helmholtz Association 29 January 2020 Slide 26

l) JULICH

Forschungszentrum

EXAMPLE

blocking, noncollective, explicit offset [MPI-3.1,13.4.2]

Process O callsMPI_File_write_at(offset = 1, count = 2):

NEFEN f iR EE E
_OIIEZIIE%“%%IIT-%-
_IEIIIIIIII-
_IIOIlllszl-

INNNNN

lJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 27 Forschungszentrum

WRITING

blocking, noncollective, individual [MPI-3.1, 13.4.3]

int MPI_File_write(MPI_File fh, const voidx buf, int count, MPI_Datatype

-~ datatype, MPI_Statusx status)

MPI_File_write(fh, buf, count, datatype, status, ierror)

type (MPI_File), tintent(in) :: fh

type(*x), dimension(..), intent(in) :: buf
integer, 1intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status

integer, optional, -+intent(out) :: derror

FO8

Starts writing at the current position of the individual file pointer
» Moves the individual file pointer by the count of etypes written

Member of the Helmholtz Association 29 January 2020 Slide 28

l) JULICH

Forschungszentrum

EXAMPLE

blocking, noncollective, individual [MPI-3.1, 13.4.3]

With its file pointer at element 1, process 1 callsMPI_File_write(count = 2):

BTN I EEEEEEEE =N
_OII1II2IIT3-
sl HEEENZENZEN

_IlelllllTZI-

Member of the Helmholtz Association 29 January 2020 Slide 29 J Forschungszentru

WRITING

nonblocking, noncollective, individual [MPI-3.1, 13.4.3]

int MPI_File_iwrite(MPI_File fh, const voidx buf, int count, MPI_Datatype
By - datatype, MPI_Requestx request)

MPI_File_iwrite(fh, buf, count, datatype, request, dierror)
type (MPI_File), tintent(in) :: fh

type(*x), dimension(..), intent(in) :: buf

integer, 1intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype

type (MPI_Request), intent(out) :: request

integer, optional, intent(out) jerror

FO8

« Starts the same operation as MPI_File_write but does not wait for completion
» Returns a request object that is used to complete the operation

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 30 Forschungszentrum

WRITING

blocking, collective, individual [MPI-3.1, 13.4.3]

int MPI_File_write_all(MPI_File fh, const void* buf, int count,
BY - MPI_Datatype datatype, MPI_Status* status)

MPI_File_write_all(fh, buf, count, datatype, status, ierror)
type (MPI_File), dintent(in) :: fh

type(*), dimension(..), intent(in) :: buf

integer, 1intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype

type(MPI_Status) :: status

integer, optional, intent(out) :: derror

FO8

« Same signature as MPI_F1ile_write, but collective coordination
« Each process uses its individual file pointer
« MPI can use communication between processes to funnel I/0

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 31 Forschungszentrum

EXAMPLE

blocking, collective, individual [MPI-3.1, 13.4.3]

« With its file pointer at element 1, process 0 calls MPI_File_write_all(count = 1),
« With its file pointer at element 0, process 1 calls MPI_File_write_all(count = 2),
« With its file pointer at element 2, process 2 calls MPI_F1ile_write_all(count 0):

File e 1 2 (3 4 |5 6 ' 8 9

gcesonl C M ZE N : NN G

Process 1 . 2 . .
R

NN
DO

BEEEEHEE

.

T
prcess2 | Il B R BB : BB

Member of the Helmholtz Association 29 January 2020 Slide 32

/.

JULICH

Forschungszentrum

WRITING

split-collective, individual [MPI-3.1, 13.4.5]

int MPI_File_write_all_begin(MPI_File fh, const voidx buf, int count,

-~ MPI_Datatype datatype)

MPI_File_write_all_begin(fh, buf, count, datatype, dierror)

type (MPI_File), tintent(in) :: fh

type(*x), dimension(..), intent(in) :: buf
integer, 1intent(in) :: count
type (MPI_Datatype), intent(in)
integer, optional, +intent(out)

datatype

lerror

FO8

« Same operationas MPI_File_write_all, but split-collective
» statusisreturned by the corresponding end routine

Member of the Helmholtz Association 29 January 2020 Slide 33

l) JULICH

Forschungszentrum

WRITING

split-collective, individual [MPI-3.1, 13.4.5]

int MPI_File_write_all_end(MPI_File fh, const voidx buf, MPI_Statusx
B9 - status)

MPI_File_write_all_end(fh, buf, status, dierror)
type (MPI_File), tintent(in) :: fh

type(*x), dimension(..), intent(in) :: buf
type(MPI_Status) :: status

integer, optional, +intent(out) :: derror

FO8

« buf argument must match corresponding begin routine

Member of the Helmholtz Association 29 January 2020 Slide 34

/.

JULICH

Forschungszentrum

EXAMPLE

blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
« processOcallsMPI_File_write_shared(count
» process 2 callsMPI_File_write_shared(count

L Fle e 12 3 405 6 7 8 5 o
I EEEEEEEEEE
EEEEm R EEEEEEEEE
BN EEEEEEEEEE B

Member of the Helmholtz Association 29 Januar y 2020 Slide 35 J Forschungszentru

3),
2):

EXAMPLE

blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
« processOcallsMPI_File_write_shared(count
» process2 callsMPI_File_write_shared(count

—llﬁ?ﬁll-
IS EEEEEEEEEE
EEEEm R EEEEEEEEE
BN EEEEEEEDEE B

Member of the Helmholtz Association 29 Januar y 2020 Slide 35 J Forschungszentru

3)

EXAMPLE

blocking, collective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,

» process 0 callsMPI_File_write_ordered(count = 1),
« process 1callsMPI_File_write_ordered(count = 2),
« process 2 callsMPI_File_write_ordered(count = 3):

L Fle e 12 3 45 6 7 8 8 o
IS EEEEEEEEEE
EEEEm R EEEEEEEEE
M EEEEEEEE B

READING

blocking, noncollective, individual [MPI-3.1, 13.4.3]

int MPI_File_read(MPI_File fh, voidx buf, int count, MPI_Datatype datatype,
B8 - MPI_Status* status)

MPI_File_read(fh, buf, count, datatype, status, 1ierror)

type (MPI_File), dintent(in) :: fh

type(*x), dimension(..) :: buf

integer, intent(in) :: count

type (MPI_Datatype), intent(in) :: datatype

type (MPI_Status) :: status

integer, optional, intent(out) :: derror

FO8

Starts reading at the current position of the individual file pointer

+ Reads up to count elements of datatype into the memory starting at bu f

» status indicates how many elements have been read

If status indicates less than count elements read, the end of file has been reached

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 37 Forschungszentrum

FILE POINTER POSITION [MPI-3.1, 13.4.3]

'int MPI_File_get_position(MPI_File fh, MPI_Offsetx offset)

MPI_File_get_position(fh, offset, dierror)

type (MPI_File), dintent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1intent(out) :: offset
integer, optional, {intent(out) :: derror

FO8

.

Returns the current position of the individual file pointer in units of etype
Value can be used for e.g.

« return to this position (via seek)
« calculate a displacement

« MPI_File_get_position_shared queries the position of the shared file pointer

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 38 Forschungszentrum

SEEKING TO A FILE POSITION [MPI-3.1,13.4.3]

'int MPI_File_seek(MPI_File fh, MPI_Offset offset, 1int whence)

MPI_File_seek(fh, offset, whence, ierror)

type (MPI_File), dintent(in) :: fh

integer (kind=MPI_OFFSET_KIND), 1intent(in) :: offset
integer, intent(in) :: whence

integer, optional, intent(out) :: derror

FO8

whence controls how the file pointer is moved:

MPI_SEEK_SET sets the file pointerto offset
MPI_SEEK_CUR offsetis relative to the current value of the pointer
MPI_SEEK_END offsetisrelative to the end of the file

offset can be negative but the resulting position may not lie before the beginning of the file

.

MPI_F1ile_seek_shared manipulates the shared file pointer

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 39 Forschungszentrum

CONVERTING OFFSETS [MPI-3.1, 13.4.3]

I'int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offsetx*
-~ disp)
O

MPI_File_get_byte_offset(fh, offset, disp, ierror)
type (MPI_File), dintent(in) :: fh
integer (kind=MPI_OFFSET_KIND), tintent(in)

integer (kind=MPI_OFFSET_KIND), +intent(out)
integer, optional, intent(out) :: ierror

offset
¢ disp

FO8

« Converts a view relative offset (in units of etype) into a displacement in bytes from the beginning of the file

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 40 Forschungszentrum

CONSISTENCY [MPI-3.1,13.6.1]

If a set of operations is sequentially consistent, they behave as if executed in some serial order. The exact order is
unspecified.

«+ To guarantee sequential consistency, certain requirements must be met
+ Requirements depend on access path and file atomicity

IJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 41 Forschungszentrum

ATOMIC MODE [MPI-3.1, 13.6.1]

Requirements for sequential consistency

Same file handle: always sequentially consistent
File handles from same open: always sequentially consistent
File handles from different open: not influenced by atomicity, see nonatomic mode

+ Atomic mode is not the default setting
« Can lead to overhead, because MPI library has to uphold guarantees in general case

'int MPI_File_set_atomicity(MPI_File fh, 1int flag)

MPI_File_set_atomicity(fh, flag, ierror)
type (MPI_File), dintent(in) :: fh
logical, intent(in) :: flag

integer, optional, intent(out) :: derror

FO8

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 42 Forschungszentrum

NONATOMIC MODE [MPI-3.1,13.6.1]

Requirements for sequential consistency

Same file handle: operations must be either nonconcurrent, nonconflicting, or both
File handles from same open: nonconflicting accesses are sequentially consistent, conflicting accesses have to be

protected using MPI_File_sync
File handles from different open: all accesses must be protected using MPI_File_sync

Conflicting Accesses

Two accesses are conflicting if they touch overlapping parts of a file and at least one is writing.
'int MPI_File_sync(MPI_File fh)

MPI_File_sync(fh, -derror)
type (MPI_File), dintent(in) :: fh

5l integer, optional, dintent(out) :: dierror

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 43 Forschungszentrum

NONATOMIC MODE [MPI-3.1,13.6.1]

The Sync-Barrier-Sync construct

// writing access sequence through /) ...

-~ one file handle MPI_File_sync(fhl);
MPI_File_sync(fho); MPI_Barrier (MPI_COMM_WORLD) ;
MPI_Barrier (MPI_COMM_WORLD) ; MPI_File_sync(fhl);
MPI_File_sync(fho); // access sequence to the same

N/ ... -~ file through a different file
BY - handle

« MPI_File_syncisused to delimit sequences of accesses through different file handles
« Sequences that contain a write access may not be concurrent with any other access sequence

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 43 Forschungszentrum

LOGIN & PROGRAMMING ENVIRONMENT

JURECA Login MPI Infrastructure
1. In aterminal on your PC, enter:
$ ssh namel@jureca.fz-juelich.de mpicc

2. Load modules and activate the training project: Fortran
mpif9o0

mpicxx

$ module load intel-para
$ jutil env activate -p training2000
- -A training2000

Course Material

Copy the course material by running:

Process startup

$ srun -n <numprocs> <program>

$ $PROJECT/mpi-io/copy.sh

9 JULICH

Member of the Helmholtz Association 29 January 2020 Slide 44 Forschungszentrum

RUNNING PARALLEL PROGRAMS ON JURECA

1. Start an interactive session To start an application with n processes, submit the
following job script with

$ salloc --reservation=pario

~ —--nodes=1 --time=08:00:00

sbatch --reservation=pario <script>

2. Wait for the prompt... #1/bin/bash
3. Start applications with n processes #SBATCH --nodes=1

$ --ntasks=<n> #SBATCH --ntasks=<n>
4eBATCH __ntaSks_per_nOde=<n>
_ °Pp 1can1on #SBATCH --time=00:05:00

module load +intel-para
srun <application>

9 JULICH

Member of the Helmholtz Association 29 January 2020 Slide 45 Forschungszentrum

EXERCISE STRATEGIES

» Do not have to solve all exercises, one per section would be good
« Exercise description tells you what MPI functions/OpenMP directives to use
» Work in pairs on harder exercises

« If you get stuck

» askus
+ peek at solution

« Makefileisincluded

exercises/mpi-io/{C|C++|Fotran|Python}/:
. Most of the algorithm is there, you add MPI
hard Almost empty files you add algorithm and MPI
solutions Fully solved exercises, if you are completely stuck or for comparison

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 46 Forschungszentrum

EXERCISES

1.1 Writing and Reading Data

In the file rank_io. {c|cxx | f90 | py} write a function wr1ite_rank that takes a communicator as its
only argument and does the following:

« Each process writes its own rank in the communicator to a common file rank.dat.
« The ranks should be in order in thefile: 0...n — 1.

Use: MPI_File_open,MPI_File_set_errhandler,MPI_File_set_view,
MPI_File_write_ordered,MPI_File_sync,MPI_File_close

Exercise 1 - Data Access

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 47 J Forschungszentrum

EXERCISES

1.2 Accessing Parts of Files

In the file rank_io. {c|cxx | f90 | py} write a function read_rank that takes a communicator as its only
argument and does the following:

« The processes read the integers in the file in reverse order, i.e. process 0 reads the last entry, process 1
reads the one before, etc.
+ Each process returns the rank number it has read from the function.
Careful: This program might be run on a communicator with a different number of processes. If there are more
processes than entries in the file, processes with ranks larger than or equal to the number of file entries should

return MPI_PROC_NULL.
Use: MPI_File_seek,MPI_File_get_position

Exercise 1 - Data Access

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 48 J Forschungszentrum

EXERCISES

1.3 Phone Book

The file phonebook . dat contains several records of the following form:

struct dbentry { type :: dbentry
int key; integer :: key
int room_number; integer :: room_number
int phone_number; integer :: phone_number
char name[200]; o character (len=200) :: name
o B @l end type

In the file phonebook. {c|cxx | f90 | py} write a function Look_up_by_room_number that uses MPI
1/0 to find an entry by room number. Return a bool or Logical to indicate whether an entry has been found
and fill an entry via pointer/intent out argument.

Use: MPI_File_read

Exercise 1 - Data Access

@) JULICH
Member of the Helmholtz Association 29 January 2020 Slide 49 J Forschungszentrum

T = &
Part lll: The Info Object

Member of the Helmholtz Association J Forschungszentru

THE INFO OBJECT [MPI-3.1, 9]

A Gentle Reminder

Used to pass hints for optimization to MPI
« Consists of (key, value) pairs, where both key and value are strings
« Each key must appear only once
« MPI_INFO_NULL can be used in place of an actual info object
» Keys must not be larger than MPI_MAX_INFO_KEY
« Values must not be larger than MPT_MAX_INFO_VAL

Info Object API

MPI_Info_create,MPI_Info_dup,MPI_Info_free,
MPI_Info_set,MPI_Info_delete,
MPI_Info_get,MPI_Info_get_valuelen,MPI_Info_get_nkeys,MPI_Info_get_nthkey

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 50 Forschungszentrum

INFO OBJECTS FOR1/O [MPI-3.1, 13.2,13.2]

Info objects can be associated with files that MPI I/O operates on using several mechanisms:

« When opening a file: the info object is passed to the MPI_F1ile_open routine
« While thefile is open:

+ When setting a file view using MPI_File_set_view
« Explicitly usingMPI_File_set_info

« When deleting a file using MPI_File_delete
« Globally using a ROMIO hint file

IJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 51 Forschungszentrum

FILE INFO OBJECT ACCESSORS [MPI-3.1,13.2.8]

'int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_File_set_info(fh, info, derror)
type (MPI_File), dintent(in) :: fh
type (MPI_Info), +intent(in) :: info

§ integer, optional, {intent(out) :: derror

'int MPI_File_get_info(MPI_File fh, MPI_Infox info)

MPI_File_get_info(fh, info, derror)
type (MPI_File), dintent(in) :: fh
type(MPI_Info), intent(out) :: 1info
integer, optional, intent(out) :: derror

FO8

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 52 Forschungszentrum

PASSING HINTS USING A FILE

Specify Hint File via Environment Variable

$ export ROMIO_HINTS=<absolute path>/hintfile

« Environment variable must be exported to the compute nodes. Use appropriate mechanisms provided by
process starters like mpiexec or runjob.
« Hints are used for all MP1 1/0 operations in the application through

« direct use of MPI1/0 routines
« use of libraries that use MPI 1/0

Example Hint File Content

collective buffering true
cb_buffer_size 33554432
cb_block_size 4194304

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 53 Forschungszentrum

RESERVED KEYS FOR 1/0 [MPI-3.1, 13.2.8]

« An MPIl implementation is not required to support these hints
« Ifa hintis supported by an implementation, it must behave as described by the standard
« Additional keys may be supported

lJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54 Forschungszentrum

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]

filename: string implementation dependent

Can be used to inspect the file name of an open file.

file_perm: string same, implementation dependent

Specifies the file permissions to set on file creation.

access_style: [string] comma separated

Specifies the manner in which the file will be accessed until it is closed or this info key is changed. Valid list
elements are:

« read_once « sequential
+ write_once « reverse_sequential
+ read_mostly « random

« write_mostly

Forschungszentrum

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]

nb_proc: dinteger

Specifies how many parallel processes usually run the application that accesses this file.

num_io_nodes: 1integer

Specifies the number of 1/0 devices in the system.

io_node_list: [string] comma separated, same, implementation dependent

Specifies a list of /O devices that should be used to store the file.

Forschungszentrum

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]

chunked: [integer] comma separated, same

Specifies that the file consists of a multidimensional array that is often accessed by subarrays. List entries are array
dimensions in order of decreasing significance.

chunked_item: [integer] comma separated, same

Specifies the size of one array entry in bytes.

chunked_size: [integer] comma separated, same

Specifies the dimensions of the subarrays.

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54 Forschungszentrum

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]

collective_buffering: boolean same

Specifies whether the application may benefit from collective buffering.

cb_nodes: integer same

Specifies the number of target nodes to be used for collective buffering.

cb_block_size: -integer

Specifies the block size to be used for collective buffering. Data access happens in chunks of this size.

cb_buffer_size: integer

Specifies the size of the buffer space that can be used on each target node.

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54 Forschungszentrum

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]

striping_factor: dinteger

Specifies the number of I/O devices that the file should be striped across. Relevant only on file creation.

striping_unit: integer same

Specifies the striping unit - the amount of consecutive data assigned to one I/O device - to be used for this file.
Only relevant on file creation.

UJ JULICH

Member of the Helmholtz Association 29 January 2020 Slide 54 Forschungszentrum

GOOD CHOICES FOR GPFS

romio_ds_write: string default: automatic

Specifies whether to use data sieving for write access. Good choice: enab'le

romio_ds_read: string default: automatic

Specifies whether to use data sieving for read access. Good choice: automatic

cb_buffer_size: integer default: 16777216

Specifies the size of the buffer space that can be used on each target node. Good choice: 33554432

« Default keys already seem to be a good setting

Collective buffering is switched on by default (collective_bufferingisignored, but
romio_cb_read/romio_cb_write are available)

Data sieving is only important for writing with shared file pointers and for small amounts of data.
« cb_nodes is set automatically and cannot be changed by the user

l) JULICH

Member of the Helmholtz Association 29 January 2020 Slide 55 Forschungszentrum

COLOPHON

This document was typeset using
+ LualTgX and a host of macro packages,
« Adobe Source Sans Pro for body text and headings,
« Adobe Source Code Pro forlistings,
+ TeX Gyre Pagella Math for mathematical formulae,
« icons from Font Awesome @.

@) JULICH
29 January 2020 Slide 56 J Forschungszentrum

Member of the Helmholtz Association

	Introduction
	File Operations
	File Manipulation
	File Views
	Data Access
	Consistency
	First Steps on a Supercomputer
	Exercises

	The Info Object
	Appendix
	Colophon

