
PARALLEL I/OWITHMPI
29 January 2020 Benedikt Steinbusch Jülich Supercomputing Centre

Member of the Helmholtz Association

Part I: Introduction

Member of the Helmholtz Association

MPI I/O FACT SHEET
Datamodel a sequence of typed data items

Self describing no
Full control of file content maybe

Use cases
• Implementing higher level formats
• Compatibility to existing formats

Member of the Helmholtz Association 29 January 2020 Slide 1

FEATURES OFMPI I/O
• Standardized I/O API since 1997
• Available in many MPI libraries
• Language bindings for C and Fortran
• Re-uses MPI’s concepts for the description of data
• Allows portable and efficient implementation of parallel I/O operations due to support for

• multiple data representations
• asynchronous I/O
• non-contiguous file access patterns
• collective file access
• MPI Info Objects

Member of the Helmholtz Association 29 January 2020 Slide 2

PREREQUISITES
You should be familiar with MPI, especially with

Processes and Ranks An MPI program is executed bymultiple processes in parallel. Processes are
identified by ranks (0, 1, …)

Communicator Combines a group of processes and a context for communication.
Blocking and Nonblocking Provide different guarantees to the user / different liberties to the MPI library.

P2P and Collective Communication Communication among pairs or groups of processes
Derived Datatypes Descriptions of data layouts
MPI Info Objects Key-value maps that can be used to provide hints

Member of the Helmholtz Association 29 January 2020 Slide 3

LITERATURE & ACKNOWLEDGEMENTS
Literature

• Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Version 3.1. June 4, 2015. URL:
https://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

• William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI. Portable Parallel Programming with the
Message-Passing Interface. 3rd ed. The MIT Press, Nov. 2014. 336 pp. ISBN: 9780262527392

• William Gropp et al. Using Advanced MPI. Modern Features of the Message-Passing Interface. 1st ed. Nov. 2014.
392 pp. ISBN: 9780262527637

• https://www.mpi-forum.org
Acknowledgements

• Rolf Rabenseifner for his comprehensive course on MPI and OpenMP
• Marc-André Hermanns, Florian Janetzko and Alexander Trautmann for their course material on MPI and OpenMP

Member of the Helmholtz Association 29 January 2020 Slide 4

https://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org

LANGUAGE BINDINGS [MPI-3.1, 17, A]
C Language Bindings

C #include <mpi.h>

Fortran Language Bindings

Consistent with F08 standard; good type-checking; highly recommended

F0
8 use mpi_f08

Not consistent with standard; so-so type-checking; not recommended

F9
0 use mpi

Not consistent with standard; no type-checking; strongly discouraged

F7
7 include 'mpif.h'

Member of the Helmholtz Association 29 January 2020 Slide 5

FORTRAN HINTS [MPI-3.1, 17.1.2 – 17.1.4]
This course uses the Fortran 2008 MPI interface (use mpi_f08) which is not available in all MPI implementations.
The Fortran 90 bindings differ from the Fortran 2008 bindings in the following points:

• All derived type arguments are instead integer (some are arrays of integer or have a non-default kind)
• Argument intent is not mandated by the Fortran 90 bindings
• The ierror argument is mandatory instead of optional
• Further details can be found in [MPI-3.1, 17.1]

Member of the Helmholtz Association 29 January 2020 Slide 6

MPI4PY HINTS
All exercises can be solved using Python with the mpi4py package. The slides do not show Python syntax, so here is
a translation guide from the standard bindings to mpi4py.

• Everything lives in the MPImodule (from mpi4py import MPI).
• Constants translate to attributes of that module: MPI_COMM_WORLD is MPI.COMM_WORLD.
• Central types translate to Python classes: MPI_Comm is MPI.Comm.
• Functions related to point-to-point and collective communication translate to methods on MPI.Comm:
MPI_Send becomes MPI.Comm.Send.

• Functions related to I/O translate to methods on MPI.File: MPI_File_write becomes
MPI.File.Write.

• Communication functions come in two flavors:
• high level, uses pickle to (de)serialize python objects, method names start with lower case letters, e.g.
MPI.Comm.send,

• low level, uses MPI Datatypes and Python buffers, method names start with upper case letters, e.g.
MPI.Comm.Scatter.

See also https://mpi4py.readthedocs.io and the built-in Python help().

Member of the Helmholtz Association 29 January 2020 Slide 7

https://mpi4py.readthedocs.io

Part II: File Operations

Member of the Helmholtz Association

FILE, FILE POINTER & HANDLE [MPI-3.1, 13.1]
File
An MPI file is an ordered collection of typed data items.

File Pointer
A file pointer is an implicit offset into a file maintained by MPI.

File Handle
An opaque MPI object. All operations on an open file reference the file through the file handle.

Member of the Helmholtz Association 29 January 2020 Slide 8

OPENING A FILE [MPI-3.1, 13.2.1]
C

int MPI_File_open(MPI_Comm comm, const char* filename, int amode, MPI_Info
info, MPI_File* fh)↪

F0
8

MPI_File_open(comm, filename, amode, info, fh, ierror)
type(MPI_Comm), intent(in) :: comm
character(len=*), intent(in) :: filename
integer, intent(in) :: amode
type(MPI_Info), intent(in) :: info
type(MPI_File), intent(out) :: fh
integer, optional, intent(out) :: ierror

• Collective operation on communicator comm
• Filenamemust reference the same file on all processes
• Process-local files can be opened using MPI_COMM_SELF
• info object specifies additional information (MPI_INFO_NULL for empty)

Member of the Helmholtz Association 29 January 2020 Slide 9

ACCESS MODE [MPI-3.1, 13.2.1]
amode denotes the access mode of the file andmust be the same on all processes. Itmust contain exactly one of the
following:
MPI_MODE_RDONLY read only access
MPI_MODE_RDWR read and write access
MPI_MODE_WRONLY write only access
andmay contain some of the following:
MPI_MODE_CREATE create the file if it does not exist
MPI_MODE_EXCL error if creating file that already exists
MPI_MODE_DELETE_ON_CLOSE delete file on close
MPI_MODE_UNIQUE_OPEN file is not opened elsewhere
MPI_MODE_SEQUENTIAL access to the file is sequential
MPI_MODE_APPEND file pointers are set to the end of the file
Combine using bit-wise or (| operator in C, ior intrinsic in Fortran).

Member of the Helmholtz Association 29 January 2020 Slide 10

CLOSING A FILE [MPI-3.1, 13.2.2]
C int MPI_File_close(MPI_File* fh)

F0
8

MPI_File_close(fh, ierror)
type(MPI_File), intent(out) :: fh
integer, optional, intent(out) :: ierror

• Collective operation
• User must ensure that all outstanding nonblocking and split collective operations associated with the file have
completed

Member of the Helmholtz Association 29 January 2020 Slide 11

DELETING A FILE [MPI-3.1, 13.2.3]
C int MPI_File_delete(const char* filename, MPI_Info info)

F0
8

MPI_File_delete(filename, info, ierror)
character(len=*), intent(in) :: filename
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

• Deletes the file identified by filename
• File deletion is a local operation and should be performed by a single process
• If the file does not exist an error is raised
• If the file is opened by any process

• all further and outstanding access to the file is implementation dependent
• it is implementation dependent whether the file is deleted; if it is not, an error is raised

Member of the Helmholtz Association 29 January 2020 Slide 12

FILE PARAMETERS
Setting File Parameters

MPI_File_set_size Set the size of a file [MPI-3.1, 13.2.4]
MPI_File_preallocate Preallocate disk space [MPI-3.1, 13.2.5]

MPI_File_set_info Supply additional information [MPI-3.1, 13.2.8]

Inspecting File Parameters

MPI_File_get_size Size of a file [MPI-3.1, 13.2.6]
MPI_File_get_amode Acess mode [MPI-3.1, 13.2.7]
MPI_File_get_group Group of processes that opened the file [MPI-3.1, 13.2.7]
MPI_File_get_info Additional information associated with the file [MPI-3.1, 13.2.8]

Member of the Helmholtz Association 29 January 2020 Slide 13

I/O ERROR HANDLING [MPI-3.1, 8.3, 13.7]
Communication, by default, aborts the programwhen an error is encountered. I/O operations, by default, return an
error code.

C int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

F0
8

MPI_File_set_errhandler(file, errhandler, ierror)
type(MPI_File), intent(in) :: file
type(MPI_Errhandler), intent(in) :: errhandler
integer, optional, intent(out) :: ierror

• The default error handler for files is MPI_ERRORS_RETURN
• Success is indicated by a return value of MPI_SUCCESS
• MPI_ERRORS_ARE_FATAL aborts the program
• Can be set for each file individually or for all files by using MPI_File_set_errhandler on a special file
handle, MPI_FILE_NULL

Member of the Helmholtz Association 29 January 2020 Slide 14

FILE VIEW [MPI-3.1, 13.3]
File View
A file view determines what part of the contents of a file is visible to a process. It is defined by a displacement (given
in bytes) from the beginning of the file, an elementary datatype and a file type. The view into a file can be changed
multiple times between opening and closing.

File Types and Elementary Types are Data Types

• Can be predefined or derived
• The usual constructors can be used to create derived file types and elementary types, e.g.

• MPI_Type_indexed,
• MPI_Type_create_struct,
• MPI_Type_create_subarray

• Displacements in their typemapmust be non-negative andmonotonically nondecreasing
• Have to be committed before use

Member of the Helmholtz Association 29 January 2020 Slide 15

DEFAULT FILE VIEW [MPI-3.1, 13.3]
When newly opened, files are assigned a default view that is the same on all processes:

• Zero displacement
• File contains a contiguous sequence of bytes
• All processes have access to the entire file

File 0: byte 1: byte 2: byte 3: byte ...

Process 0 0: byte 1: byte 2: byte 3: byte ...

Process 1 0: byte 1: byte 2: byte 3: byte ...

... 0: byte 1: byte 2: byte 3: byte ...

Member of the Helmholtz Association 29 January 2020 Slide 16

ELEMENTARY TYPE [MPI-3.1, 13.3]
Elementary Type

An elementary type (or etype) is the unit of data contained in a file. Offsets are expressed in multiples of etypes, file
pointers point to the beginning of etypes. Etypes can be basic or derived.

Changing the Elementary Type

E.g. etype = MPI_INT:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int 2: int 3: int ...

Process 1 0: int 1: int 2: int 3: int ...

... 0: int 1: int 2: int 3: int ...

Member of the Helmholtz Association 29 January 2020 Slide 17

FILE TYPE [MPI-3.1, 13.3]
File Type

A file type describes an access pattern. It can contain either instances of the etype or holes with an extent that is
divisible by the extent of the etype.

Changing the File Type

E.g. Filetype0 = {(int, 0), (hole, 4), (hole, 8)}, Filetype1 = {(hole, 0), (int, 4), (hole, 8)}, …:

File 0: int 1: int 2: int 3: int ...

Process 0 0: int 1: int ...

Process 1 0: int ...

... 0: int ...

Member of the Helmholtz Association 29 January 2020 Slide 18

CHANGING THE FILE VIEW [MPI-3.1, 13.3]
C

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
MPI_Datatype filetype, const char* datarep, MPI_Info info)↪

F0
8

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: disp
type(MPI_Datatype), intent(in) :: etype, filetype
character(len=*), intent(in) :: datarep
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

• Collective operation
• datarep and extent of etypemust match
• disp, filetype and info can be distinct
• File pointers are reset to zero
• May not overlap with nonblocking or split collective operations

Member of the Helmholtz Association 29 January 2020 Slide 19

DATA REPRESENTATION [MPI-3.1, 13.5]
• Determines the conversion of data in memory to data on disk
• Influences the interoperability of I/O between heterogeneous parts of a system or different systems

"native"
Data is stored in the file exactly as it is in memory

+ No loss of precision
+ No overhead
- On heterogeneous systems loss of transparent interoperability

Member of the Helmholtz Association 29 January 2020 Slide 20

DATA REPRESENTATION [MPI-3.1, 13.5]
"internal"
Data is stored in implementation-specific format

+ Can be used in a homogeneous and heterogeneous environment
+ Implementation will perform conversions if necessary
- Can incur overhead
- Not necessarily compatible between different implementations

"external32"
Data is stored in standardized data representation (big-endian IEEE)

+ Can be read/written also by non-MPI programs
- Precision and I/O performance may be lost due to type conversions between native and external32
representations

- Not available in all implementations

Member of the Helmholtz Association 29 January 2020 Slide 20

DATA ACCESS
Three orthogonal aspects
1. Synchronism

1. Blocking
2. Nonblocking
3. Split collective

2. Coordination
1. Noncollective
2. Collective

3. Positioning
1. Explicit offsets
2. Individual file pointers
3. Shared file pointers

POSIX read() and write()

These are blocking, noncollective operations with
individual file pointers.

Member of the Helmholtz Association 29 January 2020 Slide 21

SYNCHRONISM
Blocking I/O

Blocking I/O routines do not return before the operation is completed.

Nonblocking I/O

• Nonblocking I/O routines do not wait for the operation to finish
• A separate completion routine is necessary [MPI-3.1, 3.7.3, 3.7.5]
• The associated buffers must not be used while the operation is in flight

Split Collective

• “Restricted” form of nonblocking collective
• Buffers must not be used while in flight
• Does not allow other collective accesses to the file while in flight
• begin and endmust be used from the same thread

Member of the Helmholtz Association 29 January 2020 Slide 22

COORDINATION
Noncollective
The completion depends only on the activity of the calling process.

Collective
• Completion may depend on activity of other processes
• Opens opportunities for optimization

Member of the Helmholtz Association 29 January 2020 Slide 23

POSITIONING [MPI-3.1, 13.4.1 – 13.4.4]
Explicit Offset

• No file pointer is used
• File position for access is given directly as function argument

Individual File Pointers
• Each process has its own file pointer
• After access, pointer is moved to first etype after the last one accessed

Shared File Pointers
• All processes share a single file pointer
• All processes must use the same file view
• Individual accesses appear as if serialized (with an unspecified order)
• Collective accesses are performed in order of ascending rank

Member of the Helmholtz Association 29 January 2020 Slide 24

Combine the prefix MPI_File_with any of the following suffixes:

coordination

positioning synchronism noncollective collective

explicit offsets
blocking read_at, write_at read_at_all, write_at_all

nonblocking iread_at, iwrite_at iread_at_all, iwrite_at_all

split collective N/A read_at_all_begin,
read_at_all_end,
write_at_all_begin,
write_at_all_end

individual file
pointers

blocking read, write read_all, write_all

nonblocking iread, iwrite iread_all, iwrite_all

split collective N/A read_all_begin, read_all_end,
write_all_begin, write_all_end

shared file pointers
blocking read_shared, write_shared read_ordered, write_ordered

nonblocking iread_shared, iwrite_shared N/A

split collective N/A read_ordered_begin,
read_ordered_end,
write_ordered_begin,
write_ordered_end

WRITING
blocking, noncollective, explicit offset [MPI-3.1, 13.4.2]

C

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void* buf, int
count, MPI_Datatype datatype, MPI_Status *status)↪

F0
8

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
integer, optional, intent(out) :: ierror

• Starting offset for access is explicitly given
• No file pointer is updated
• Writes count elements of datatype frommemory starting at buf
• Typesig datatype = Typesig etype… Typesig etype
• Writing past end of file increases the file size

Member of the Helmholtz Association 29 January 2020 Slide 26

EXAMPLE
blocking, noncollective, explicit offset [MPI-3.1, 13.4.2]

Process 0 calls MPI_File_write_at(offset = 1, count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association 29 January 2020 Slide 27

WRITING
blocking, noncollective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_write(MPI_File fh, const void* buf, int count, MPI_Datatype
datatype, MPI_Status* status)↪

F0
8

MPI_File_write(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• Starts writing at the current position of the individual file pointer
• Moves the individual file pointer by the count of etypeswritten

Member of the Helmholtz Association 29 January 2020 Slide 28

EXAMPLE
blocking, noncollective, individual [MPI-3.1, 13.4.3]

With its file pointer at element 1, process 1 calls MPI_File_write(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association 29 January 2020 Slide 29

WRITING
nonblocking, noncollective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_iwrite(MPI_File fh, const void* buf, int count, MPI_Datatype
datatype, MPI_Request* request)↪

F0
8

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Request), intent(out) :: request
integer, optional, intent(out) :: ierror

• Starts the same operation as MPI_File_write but does not wait for completion
• Returns a request object that is used to complete the operation

Member of the Helmholtz Association 29 January 2020 Slide 30

WRITING
blocking, collective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_write_all(MPI_File fh, const void* buf, int count,
MPI_Datatype datatype, MPI_Status* status)↪

F0
8

MPI_File_write_all(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• Same signature as MPI_File_write, but collective coordination
• Each process uses its individual file pointer
• MPI can use communication between processes to funnel I/O

Member of the Helmholtz Association 29 January 2020 Slide 31

EXAMPLE
blocking, collective, individual [MPI-3.1, 13.4.3]

• With its file pointer at element 1, process 0 calls MPI_File_write_all(count = 1),
• With its file pointer at element 0, process 1 calls MPI_File_write_all(count = 2),
• With its file pointer at element 2, process 2 calls MPI_File_write_all(count = 0):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 ...

Process 1 0 1 2 ...

Process 2 0 1 2 ...

Member of the Helmholtz Association 29 January 2020 Slide 32

WRITING
split-collective, individual [MPI-3.1, 13.4.5]

C

int MPI_File_write_all_begin(MPI_File fh, const void* buf, int count,
MPI_Datatype datatype)↪

F0
8

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
integer, optional, intent(out) :: ierror

• Same operation as MPI_File_write_all, but split-collective
• status is returned by the corresponding end routine

Member of the Helmholtz Association 29 January 2020 Slide 33

WRITING
split-collective, individual [MPI-3.1, 13.4.5]

C

int MPI_File_write_all_end(MPI_File fh, const void* buf, MPI_Status*
status)↪

F0
8

MPI_File_write_all_end(fh, buf, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..), intent(in) :: buf
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• buf argument must match corresponding begin routine

Member of the Helmholtz Association 29 January 2020 Slide 34

EXAMPLE
blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
• process 0 calls MPI_File_write_shared(count = 3),
• process 2 calls MPI_File_write_shared(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

Member of the Helmholtz Association 29 January 2020 Slide 35

EXAMPLE
blocking, noncollective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
• process 0 calls MPI_File_write_shared(count = 3),
• process 2 calls MPI_File_write_shared(count = 2):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

Member of the Helmholtz Association 29 January 2020 Slide 35

EXAMPLE
blocking, collective, shared [MPI-3.1, 13.4.4]

With the shared pointer at element 2,
• process 0 calls MPI_File_write_ordered(count = 1),
• process 1 calls MPI_File_write_ordered(count = 2),
• process 2 calls MPI_File_write_ordered(count = 3):

File 0 1 2 3 4 5 6 7 8 9 ...

Process 0 0 1 2 3 4 5 6 7 8 9 ...

Process 1 0 1 2 3 4 5 6 7 8 9 ...

Process 2 0 1 2 3 4 5 6 7 8 9 ...

READING
blocking, noncollective, individual [MPI-3.1, 13.4.3]

C

int MPI_File_read(MPI_File fh, void* buf, int count, MPI_Datatype datatype,
MPI_Status* status)↪

F0
8

MPI_File_read(fh, buf, count, datatype, status, ierror)
type(MPI_File), intent(in) :: fh
type(*), dimension(..) :: buf
integer, intent(in) :: count
type(MPI_Datatype), intent(in) :: datatype
type(MPI_Status) :: status
integer, optional, intent(out) :: ierror

• Starts reading at the current position of the individual file pointer
• Reads up to count elements of datatype into the memory starting at buf
• status indicates howmany elements have been read
• If status indicates less than count elements read, the end of file has been reached

Member of the Helmholtz Association 29 January 2020 Slide 37

FILE POINTER POSITION [MPI-3.1, 13.4.3]
C int MPI_File_get_position(MPI_File fh, MPI_Offset* offset)

F0
8

MPI_File_get_position(fh, offset, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(out) :: offset
integer, optional, intent(out) :: ierror

• Returns the current position of the individual file pointer in units of etype
• Value can be used for e.g.

• return to this position (via seek)
• calculate a displacement

• MPI_File_get_position_shared queries the position of the shared file pointer

Member of the Helmholtz Association 29 January 2020 Slide 38

SEEKING TO A FILE POSITION [MPI-3.1, 13.4.3]
C int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

F0
8

MPI_File_seek(fh, offset, whence, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
integer, intent(in) :: whence
integer, optional, intent(out) :: ierror

• whence controls how the file pointer is moved:
MPI_SEEK_SET sets the file pointer to offset
MPI_SEEK_CUR offset is relative to the current value of the pointer
MPI_SEEK_END offset is relative to the end of the file

• offset can be negative but the resulting position may not lie before the beginning of the file
• MPI_File_seek_sharedmanipulates the shared file pointer

Member of the Helmholtz Association 29 January 2020 Slide 39

CONVERTING OFFSETS [MPI-3.1, 13.4.3]
C

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset, MPI_Offset*
disp)↪

F0
8

MPI_File_get_byte_offset(fh, offset, disp, ierror)
type(MPI_File), intent(in) :: fh
integer(kind=MPI_OFFSET_KIND), intent(in) :: offset
integer(kind=MPI_OFFSET_KIND), intent(out) :: disp
integer, optional, intent(out) :: ierror

• Converts a view relative offset (in units of etype) into a displacement in bytes from the beginning of the file

Member of the Helmholtz Association 29 January 2020 Slide 40

CONSISTENCY [MPI-3.1, 13.6.1]
Sequential Consistency

If a set of operations is sequentially consistent, they behave as if executed in some serial order. The exact order is
unspecified.

• To guarantee sequential consistency, certain requirements must be met
• Requirements depend on access path and file atomicity

Result of operations that are not sequentially consistent is implementation dependent.

Member of the Helmholtz Association 29 January 2020 Slide 41

ATOMIC MODE [MPI-3.1, 13.6.1]
Requirements for sequential consistency

Same file handle: always sequentially consistent
File handles from same open: always sequentially consistent
File handles from different open: not influenced by atomicity, see nonatomic mode

• Atomic mode is not the default setting
• Can lead to overhead, because MPI library has to uphold guarantees in general case

C int MPI_File_set_atomicity(MPI_File fh, int flag)

F0
8

MPI_File_set_atomicity(fh, flag, ierror)
type(MPI_File), intent(in) :: fh
logical, intent(in) :: flag
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association 29 January 2020 Slide 42

NONATOMIC MODE [MPI-3.1, 13.6.1]
Requirements for sequential consistency

Same file handle: operations must be either nonconcurrent, nonconflicting, or both
File handles from same open: nonconflicting accesses are sequentially consistent, conflicting accesses have to be
protected using MPI_File_sync
File handles from different open: all accesses must be protected using MPI_File_sync

Conflicting Accesses

Two accesses are conflicting if they touch overlapping parts of a file and at least one is writing.

C int MPI_File_sync(MPI_File fh)

F0
8

MPI_File_sync(fh, ierror)
type(MPI_File), intent(in) :: fh
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association 29 January 2020 Slide 43

NONATOMIC MODE [MPI-3.1, 13.6.1]
The Sync-Barrier-Sync construct

C

// writing access sequence through
one file handle↪

MPI_File_sync(fh0);
MPI_Barrier(MPI_COMM_WORLD);
MPI_File_sync(fh0);
// ...

C

// ...
MPI_File_sync(fh1);
MPI_Barrier(MPI_COMM_WORLD);
MPI_File_sync(fh1);
// access sequence to the same

file through a different file
handle

↪

↪

• MPI_File_sync is used to delimit sequences of accesses through different file handles
• Sequences that contain a write access may not be concurrent with any other access sequence

Member of the Helmholtz Association 29 January 2020 Slide 43

LOGIN & PROGRAMMING ENVIRONMENT

JURECA Login

1. In a terminal on your PC, enter:

$ ssh name1@jureca.fz-juelich.de

2. Loadmodules and activate the training project:

$ module load intel-para
$ jutil env activate -p training2000

-A training2000↪

Course Material
Copy the course material by running:

$ $PROJECT/mpi-io/copy.sh

MPI Infrastructure

C

$ mpicc

Fortran

$ mpif90

C++

$ mpicxx

Process startup

$ srun -n <numprocs> <program>

Member of the Helmholtz Association 29 January 2020 Slide 44

RUNNING PARALLEL PROGRAMS ON JURECA

Interactive Mode
1. Start an interactive session

$ salloc --reservation=pario
--nodes=1 --time=08:00:00↪

2. Wait for the prompt…
3. Start applications with n processes

$ srun --ntasks=<n>
<application>↪

Batch Mode
To start an application with n processes, submit the
following job script with

sbatch --reservation=pario <script>

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=<n>
#SBATCH --ntasks-per-node=<n>
#SBATCH --time=00:05:00
module load intel-para
srun <application>

Member of the Helmholtz Association 29 January 2020 Slide 45

EXERCISE STRATEGIES
Solving

• Do not have to solve all exercises, one per section would be good
• Exercise description tells you what MPI functions/OpenMP directives to use
• Work in pairs on harder exercises
• If you get stuck

• ask us
• peek at solution

• Makefile is included

Solutions
exercises/mpi-io/{C|C++|Fotran|Python}/:

. Most of the algorithm is there, you add MPI
hard Almost empty files you add algorithm and MPI

solutions Fully solved exercises, if you are completely stuck or for comparison

Member of the Helmholtz Association 29 January 2020 Slide 46

EXERCISES
Ex
er
ci
se

1
–
Da

ta
Ac
ce
ss 1.1 Writing and Reading Data

In the file rank_io.{c|cxx|f90|py}write a function write_rank that takes a communicator as its
only argument and does the following:

• Each process writes its own rank in the communicator to a common file rank.dat.
• The ranks should be in order in the file: 0 … 𝑛 − 1.

Use: MPI_File_open, MPI_File_set_errhandler, MPI_File_set_view,
MPI_File_write_ordered, MPI_File_sync, MPI_File_close

Member of the Helmholtz Association 29 January 2020 Slide 47

EXERCISES
Ex
er
ci
se

1
–
Da

ta
Ac
ce
ss

1.2 Accessing Parts of Files

In the file rank_io.{c|cxx|f90|py}write a function read_rank that takes a communicator as its only
argument and does the following:

• The processes read the integers in the file in reverse order, i.e. process 0 reads the last entry, process 1
reads the one before, etc.

• Each process returns the rank number it has read from the function.
Careful: This programmight be run on a communicator with a different number of processes. If there are more
processes than entries in the file, processes with ranks larger than or equal to the number of file entries should
return MPI_PROC_NULL.
Use: MPI_File_seek, MPI_File_get_position

Member of the Helmholtz Association 29 January 2020 Slide 48

EXERCISES
Ex
er
ci
se

1
–
Da

ta
Ac
ce
ss

1.3 Phone Book
The file phonebook.dat contains several records of the following form:

C

struct dbentry {
int key;
int room_number;
int phone_number;
char name[200];

} F0
8

type :: dbentry
integer :: key
integer :: room_number
integer :: phone_number
character(len=200) :: name

end type

In the file phonebook.{c|cxx|f90|py}write a function look_up_by_room_number that uses MPI
I/O to find an entry by room number. Return a bool or logical to indicate whether an entry has been found
and fill an entry via pointer/intent out argument.
Use: MPI_File_read

Member of the Helmholtz Association 29 January 2020 Slide 49

Part III: The Info Object

Member of the Helmholtz Association

THE INFO OBJECT [MPI-3.1, 9]
A Gentle Reminder

Used to pass hints for optimization to MPI
• Consists of (key, value) pairs, where both key and value are strings
• Each keymust appear only once
• MPI_INFO_NULL can be used in place of an actual info object
• Keys must not be larger than MPI_MAX_INFO_KEY
• Values must not be larger than MPI_MAX_INFO_VAL

Info Object API

MPI_Info_create, MPI_Info_dup, MPI_Info_free,
MPI_Info_set, MPI_Info_delete,
MPI_Info_get, MPI_Info_get_valuelen, MPI_Info_get_nkeys, MPI_Info_get_nthkey

Member of the Helmholtz Association 29 January 2020 Slide 50

INFO OBJECTS FOR I/O [MPI-3.1, 13.2, 13.2]
Info objects can be associated with files that MPI I/O operates on using several mechanisms:

• When opening a file: the info object is passed to the MPI_File_open routine
• While the file is open:

• When setting a file view using MPI_File_set_view
• Explicitly using MPI_File_set_info

• When deleting a file using MPI_File_delete
• Globally using a ROMIO hint file

Some info items can only be reasonably used e.g. when opening a file and will be ignored when later used with
MPI_File_set_info.

Member of the Helmholtz Association 29 January 2020 Slide 51

FILE INFO OBJECT ACCESSORS [MPI-3.1, 13.2.8]
C int MPI_File_set_info(MPI_File fh, MPI_Info info)

F0
8

MPI_File_set_info(fh, info, ierror)
type(MPI_File), intent(in) :: fh
type(MPI_Info), intent(in) :: info
integer, optional, intent(out) :: ierror

C int MPI_File_get_info(MPI_File fh, MPI_Info* info)

F0
8

MPI_File_get_info(fh, info, ierror)
type(MPI_File), intent(in) :: fh
type(MPI_Info), intent(out) :: info
integer, optional, intent(out) :: ierror

Member of the Helmholtz Association 29 January 2020 Slide 52

PASSING HINTS USING A FILE
Specify Hint File via Environment Variable

$ export ROMIO_HINTS=<absolute path>/hintfile

• Environment variable must be exported to the compute nodes. Use appropriate mechanisms provided by
process starters like mpiexec or runjob.

• Hints are used for all MPI I/O operations in the application through
• direct use of MPI I/O routines
• use of libraries that use MPI I/O

Example Hint File Content

collective buffering true
cb_buffer_size 33554432
cb_block_size 4194304

Member of the Helmholtz Association 29 January 2020 Slide 53

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
• An MPI implementation is not required to support these hints
• If a hint is supported by an implementation, it must behave as described by the standard
• Additional keys may be supported

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
filename: string implementation dependent

Can be used to inspect the file name of an open file.

file_perm: string same, implementation dependent

Specifies the file permissions to set on file creation.

access_style: [string] comma separated

Specifies the manner in which the file will be accessed until it is closed or this info key is changed. Valid list
elements are:

• read_once
• write_once
• read_mostly
• write_mostly

• sequential
• reverse_sequential
• random

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
nb_proc: integer same

Specifies howmany parallel processes usually run the application that accesses this file.

num_io_nodes: integer same

Specifies the number of I/O devices in the system.

io_node_list: [string] comma separated, same, implementation dependent

Specifies a list of I/O devices that should be used to store the file.

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
chunked: [integer] comma separated, same

Specifies that the file consists of a multidimensional array that is often accessed by subarrays. List entries are array
dimensions in order of decreasing significance.

chunked_item: [integer] comma separated, same

Specifies the size of one array entry in bytes.

chunked_size: [integer] comma separated, same

Specifies the dimensions of the subarrays.

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
collective_buffering: boolean same

Specifies whether the application may benefit from collective buffering.

cb_nodes: integer same

Specifies the number of target nodes to be used for collective buffering.

cb_block_size: integer same

Specifies the block size to be used for collective buffering. Data access happens in chunks of this size.

cb_buffer_size: integer same

Specifies the size of the buffer space that can be used on each target node.

Member of the Helmholtz Association 29 January 2020 Slide 54

RESERVED KEYS FOR I/O [MPI-3.1, 13.2.8]
striping_factor: integer same

Specifies the number of I/O devices that the file should be striped across. Relevant only on file creation.

striping_unit: integer same

Specifies the striping unit – the amount of consecutive data assigned to one I/O device – to be used for this file.
Only relevant on file creation.

Member of the Helmholtz Association 29 January 2020 Slide 54

GOOD CHOICES FOR GPFS
romio_ds_write: string default: automatic

Specifies whether to use data sieving for write access. Good choice: enable

romio_ds_read: string default: automatic

Specifies whether to use data sieving for read access. Good choice: automatic

cb_buffer_size: integer default: 16777216

Specifies the size of the buffer space that can be used on each target node. Good choice: 33554432

• Default keys already seem to be a good setting

• Collective buffering is switched on by default (collective_buffering is ignored, but
romio_cb_read/romio_cb_write are available)

• Data sieving is only important for writing with shared file pointers and for small amounts of data.

• cb_nodes is set automatically and cannot be changed by the user

Member of the Helmholtz Association 29 January 2020 Slide 55

COLOPHON
This document was typeset using

• LuaLATEX and a host of macro packages,
• Adobe Source Sans Pro for body text and headings,
• Adobe Source Code Pro for listings,
• TeX Gyre Pagella Math for mathematical formulae,
• icons from Font AwesomeFont-Awesome.

Member of the Helmholtz Association 29 January 2020 Slide 56

	Introduction
	File Operations
	File Manipulation
	File Views
	Data Access
	Consistency
	First Steps on a Supercomputer
	Exercises

	The Info Object
	Appendix
	Colophon

