000877279 001__ 877279
000877279 005__ 20240711085621.0
000877279 0247_ $$2doi$$a10.1021/acsami.9b11891
000877279 0247_ $$2ISSN$$a1944-8244
000877279 0247_ $$2ISSN$$a1944-8252
000877279 0247_ $$2altmetric$$aaltmetric:73585677
000877279 0247_ $$2pmid$$a31898457
000877279 0247_ $$2WOS$$aWOS:000526543400026
000877279 037__ $$aFZJ-2020-02102
000877279 082__ $$a600
000877279 1001_ $$00000-0002-4719-9040$$aIvanova, Alesja$$b0
000877279 245__ $$aCellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing
000877279 260__ $$aWashington, DC$$bSoc.$$c2020
000877279 3367_ $$2DRIVER$$aarticle
000877279 3367_ $$2DataCite$$aOutput Types/Journal article
000877279 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607973418_18530
000877279 3367_ $$2BibTeX$$aARTICLE
000877279 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877279 3367_ $$00$$2EndNote$$aJournal Article
000877279 500__ $$aKein Post-print vorhanden!
000877279 520__ $$aPorous tin dioxide is an important low-cost semiconductor applied in electronics, gas sensors, and biosensors. Here, we present a versatile template-assisted synthesis of nanostructured tin dioxide thin films using cellulose nanocrystals (CNCs). We demonstrate that the structural features of CNC-templated tin dioxide films strongly depend on the precursor composition. The precursor properties were studied by using low-temperature nuclear magnetic resonance spectroscopy of tin tetrachloride in solution. We demonstrate that it is possible to optimize the precursor conditions to obtain homogeneous precursor mixtures and therefore highly porous thin films with pore dimensions in the range of 10–20 nm (ABET = 46–64 m2 g–1, measured on powder). Finally, by exploiting the high surface area of the material, we developed a resistive gas sensor based on CNC-templated tin dioxide. The sensor shows high sensitivity to carbon monoxide (CO) in ppm concentrations and low cross-sensitivity to humidity. Most importantly, the sensing kinetics are remarkably fast; both the response to the analyte gas and the signal decay after gas exposure occur within a few seconds, faster than in standard SnO2-based CO sensors. This is attributed to the high gas accessibility of the very thin porous film.
000877279 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877279 588__ $$aDataset connected to CrossRef
000877279 7001_ $$00000-0001-5002-5685$$aFrka-Petesic, Bruno$$b1
000877279 7001_ $$0P:(DE-HGF)0$$aPaul, Andrej$$b2
000877279 7001_ $$0P:(DE-HGF)0$$aWagner, Thorsten$$b3
000877279 7001_ $$00000-0003-0051-9542$$aJumabekov, Askhat N.$$b4
000877279 7001_ $$0P:(DE-HGF)0$$aVilk, Yury$$b5
000877279 7001_ $$0P:(DE-HGF)0$$aWeber, Johannes$$b6
000877279 7001_ $$00000-0003-2294-796X$$aSchmedt auf der Günne, Jörn$$b7
000877279 7001_ $$00000-0003-0664-1418$$aVignolini, Silvia$$b8
000877279 7001_ $$0P:(DE-HGF)0$$aTiemann, Michael$$b9
000877279 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b10$$eCorresponding author
000877279 7001_ $$00000-0001-7248-5906$$aBein, Thomas$$b11
000877279 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.9b11891$$gVol. 12, no. 11, p. 12639 - 12647$$n11$$p12639 - 12647$$tACS applied materials & interfaces$$v12$$x1944-8252$$y2020
000877279 8564_ $$uhttps://juser.fz-juelich.de/record/877279/files/acsami.9b11891.pdf$$yRestricted
000877279 909CO $$ooai:juser.fz-juelich.de:877279$$pVDB
000877279 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b10$$kFZJ
000877279 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877279 9141_ $$y2020
000877279 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2018$$d2020-01-05
000877279 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2018$$d2020-01-05
000877279 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877279 980__ $$ajournal
000877279 980__ $$aVDB
000877279 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877279 980__ $$aUNRESTRICTED
000877279 981__ $$aI:(DE-Juel1)IMD-2-20101013