001     877279
005     20240711085621.0
024 7 _ |a 10.1021/acsami.9b11891
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a altmetric:73585677
|2 altmetric
024 7 _ |a 31898457
|2 pmid
024 7 _ |a WOS:000526543400026
|2 WOS
037 _ _ |a FZJ-2020-02102
082 _ _ |a 600
100 1 _ |a Ivanova, Alesja
|0 0000-0002-4719-9040
|b 0
245 _ _ |a Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing
260 _ _ |a Washington, DC
|c 2020
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607973418_18530
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Kein Post-print vorhanden!
520 _ _ |a Porous tin dioxide is an important low-cost semiconductor applied in electronics, gas sensors, and biosensors. Here, we present a versatile template-assisted synthesis of nanostructured tin dioxide thin films using cellulose nanocrystals (CNCs). We demonstrate that the structural features of CNC-templated tin dioxide films strongly depend on the precursor composition. The precursor properties were studied by using low-temperature nuclear magnetic resonance spectroscopy of tin tetrachloride in solution. We demonstrate that it is possible to optimize the precursor conditions to obtain homogeneous precursor mixtures and therefore highly porous thin films with pore dimensions in the range of 10–20 nm (ABET = 46–64 m2 g–1, measured on powder). Finally, by exploiting the high surface area of the material, we developed a resistive gas sensor based on CNC-templated tin dioxide. The sensor shows high sensitivity to carbon monoxide (CO) in ppm concentrations and low cross-sensitivity to humidity. Most importantly, the sensing kinetics are remarkably fast; both the response to the analyte gas and the signal decay after gas exposure occur within a few seconds, faster than in standard SnO2-based CO sensors. This is attributed to the high gas accessibility of the very thin porous film.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Frka-Petesic, Bruno
|0 0000-0001-5002-5685
|b 1
700 1 _ |a Paul, Andrej
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wagner, Thorsten
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jumabekov, Askhat N.
|0 0000-0003-0051-9542
|b 4
700 1 _ |a Vilk, Yury
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Weber, Johannes
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schmedt auf der Günne, Jörn
|0 0000-0003-2294-796X
|b 7
700 1 _ |a Vignolini, Silvia
|0 0000-0003-0664-1418
|b 8
700 1 _ |a Tiemann, Michael
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 P:(DE-Juel1)171780
|b 10
|e Corresponding author
700 1 _ |a Bein, Thomas
|0 0000-0001-7248-5906
|b 11
773 _ _ |a 10.1021/acsami.9b11891
|g Vol. 12, no. 11, p. 12639 - 12647
|0 PERI:(DE-600)2467494-1
|n 11
|p 12639 - 12647
|t ACS applied materials & interfaces
|v 12
|y 2020
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/877279/files/acsami.9b11891.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:877279
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-01-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2018
|d 2020-01-05
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21