000877280 001__ 877280
000877280 005__ 20240708132659.0
000877280 0247_ $$2doi$$a10.1039/C9NR10250G
000877280 0247_ $$2ISSN$$a2040-3364
000877280 0247_ $$2ISSN$$a2040-3372
000877280 0247_ $$2Handle$$a2128/25235
000877280 0247_ $$2altmetric$$aaltmetric:77775635
000877280 0247_ $$2pmid$$apmid:32215409
000877280 0247_ $$2WOS$$aWOS:000529531500029
000877280 037__ $$aFZJ-2020-02103
000877280 082__ $$a600
000877280 1001_ $$00000-0002-0050-2233$$aKampmann, Jonathan$$b0
000877280 245__ $$aHow photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production
000877280 260__ $$aCambridge$$bRSC Publ.$$c2020
000877280 3367_ $$2DRIVER$$aarticle
000877280 3367_ $$2DataCite$$aOutput Types/Journal article
000877280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594113412_24022
000877280 3367_ $$2BibTeX$$aARTICLE
000877280 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877280 3367_ $$00$$2EndNote$$aJournal Article
000877280 520__ $$aThe efficiency of photoelectrochemical tandem cells is still limited by the availability of stable low band gap electrodes. In this work, we report a photocathode based on lithium doped copper(II) oxide, a black p-type semiconductor. Density functional theory calculations with a Hubbard U term show that low concentrations of Li (Li0.03Cu0.97O) lead to an upward shift of the valence band maximum that crosses the Fermi level and results in a p-type semiconductor. Therefore, Li doping emerged as a suitable approach to manipulate the electronic structure of copper oxide based photocathodes. As this material class suffers from instability in water under operating conditions, the recorded photocurrents are repeatedly misinterpreted as hydrogen evolution evidence. We investigated the photocorrosion behavior of LixCu1−xO cathodes in detail and give the first mechanistic study of the fundamental physical process. The reduced copper oxide species were localized by electron energy loss spectroscopy mapping. Cu2O grows as distinct crystallites on the surface of LixCu1−xO instead of forming a dense layer. Additionally, there is no obvious Cu2O gradient inside the films, as Cu2O seems to form on all LixCu1−xO nanocrystals exposed to water. The application of a thin Ti0.8Nb0.2Ox coating by atomic layer deposition and the deposition of a platinum co-catalyst increased the stability of LixCu1−xO against decomposition. These devices showed a stable hydrogen evolution for 15 minutes.
000877280 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877280 588__ $$aDataset connected to CrossRef
000877280 7001_ $$0P:(DE-HGF)0$$aBetzler, Sophia$$b1
000877280 7001_ $$0P:(DE-HGF)0$$aHajiyani, Hamidreza$$b2
000877280 7001_ $$00000-0001-6379-5371$$aHäringer, Sebastian$$b3
000877280 7001_ $$00000-0002-6432-5918$$aBeetz, Michael$$b4
000877280 7001_ $$0P:(DE-HGF)0$$aHarzer, Tristan$$b5
000877280 7001_ $$0P:(DE-HGF)0$$aKraus, Jürgen$$b6
000877280 7001_ $$00000-0002-3094-303X$$aLotsch, Bettina V.$$b7
000877280 7001_ $$0P:(DE-HGF)0$$aScheu, Christina$$b8
000877280 7001_ $$0P:(DE-HGF)0$$aPentcheva, Rossitza$$b9
000877280 7001_ $$0P:(DE-Juel1)171780$$aFattakhova, Dina$$b10$$eCorresponding author
000877280 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b11$$eCorresponding author
000877280 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C9NR10250G$$gVol. 12, no. 14, p. 7766 - 7775$$n14$$p7766 - 7775$$tNanoscale$$v12$$x2040-3372$$y2020
000877280 8564_ $$uhttps://juser.fz-juelich.de/record/877280/files/Stability-study_CuLiOxide_revised_v2.pdf$$yPublished on 2020-03-18. Available in OpenAccess from 2021-03-18.
000877280 8564_ $$uhttps://juser.fz-juelich.de/record/877280/files/Stability-study_CuLiOxide_revised_v2.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-03-18. Available in OpenAccess from 2021-03-18.
000877280 909CO $$ooai:juser.fz-juelich.de:877280$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b10$$kFZJ
000877280 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877280 9141_ $$y2020
000877280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2018$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2018$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000877280 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000877280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877280 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877280 9801_ $$aFullTexts
000877280 980__ $$ajournal
000877280 980__ $$aVDB
000877280 980__ $$aUNRESTRICTED
000877280 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877280 981__ $$aI:(DE-Juel1)IMD-2-20101013