001     877280
005     20240708132659.0
024 7 _ |a 10.1039/C9NR10250G
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a 2128/25235
|2 Handle
024 7 _ |a altmetric:77775635
|2 altmetric
024 7 _ |a pmid:32215409
|2 pmid
024 7 _ |a WOS:000529531500029
|2 WOS
037 _ _ |a FZJ-2020-02103
082 _ _ |a 600
100 1 _ |a Kampmann, Jonathan
|0 0000-0002-0050-2233
|b 0
245 _ _ |a How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production
260 _ _ |a Cambridge
|c 2020
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594113412_24022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The efficiency of photoelectrochemical tandem cells is still limited by the availability of stable low band gap electrodes. In this work, we report a photocathode based on lithium doped copper(II) oxide, a black p-type semiconductor. Density functional theory calculations with a Hubbard U term show that low concentrations of Li (Li0.03Cu0.97O) lead to an upward shift of the valence band maximum that crosses the Fermi level and results in a p-type semiconductor. Therefore, Li doping emerged as a suitable approach to manipulate the electronic structure of copper oxide based photocathodes. As this material class suffers from instability in water under operating conditions, the recorded photocurrents are repeatedly misinterpreted as hydrogen evolution evidence. We investigated the photocorrosion behavior of LixCu1−xO cathodes in detail and give the first mechanistic study of the fundamental physical process. The reduced copper oxide species were localized by electron energy loss spectroscopy mapping. Cu2O grows as distinct crystallites on the surface of LixCu1−xO instead of forming a dense layer. Additionally, there is no obvious Cu2O gradient inside the films, as Cu2O seems to form on all LixCu1−xO nanocrystals exposed to water. The application of a thin Ti0.8Nb0.2Ox coating by atomic layer deposition and the deposition of a platinum co-catalyst increased the stability of LixCu1−xO against decomposition. These devices showed a stable hydrogen evolution for 15 minutes.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Betzler, Sophia
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hajiyani, Hamidreza
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Häringer, Sebastian
|0 0000-0001-6379-5371
|b 3
700 1 _ |a Beetz, Michael
|0 0000-0002-6432-5918
|b 4
700 1 _ |a Harzer, Tristan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kraus, Jürgen
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lotsch, Bettina V.
|0 0000-0002-3094-303X
|b 7
700 1 _ |a Scheu, Christina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pentcheva, Rossitza
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fattakhova, Dina
|0 P:(DE-Juel1)171780
|b 10
|e Corresponding author
700 1 _ |a Bein, Thomas
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1039/C9NR10250G
|g Vol. 12, no. 14, p. 7766 - 7775
|0 PERI:(DE-600)2515664-0
|n 14
|p 7766 - 7775
|t Nanoscale
|v 12
|y 2020
|x 2040-3372
856 4 _ |y Published on 2020-03-18. Available in OpenAccess from 2021-03-18.
|u https://juser.fz-juelich.de/record/877280/files/Stability-study_CuLiOxide_revised_v2.pdf
856 4 _ |y Published on 2020-03-18. Available in OpenAccess from 2021-03-18.
|x pdfa
|u https://juser.fz-juelich.de/record/877280/files/Stability-study_CuLiOxide_revised_v2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877280
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2018
|d 2020-02-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21