000877283 001__ 877283
000877283 005__ 20240711085622.0
000877283 0247_ $$2doi$$a10.1515/zpch-2019-1482
000877283 0247_ $$2ISSN$$a0044-3336
000877283 0247_ $$2ISSN$$a0372-8501
000877283 0247_ $$2ISSN$$a0372-9656
000877283 0247_ $$2ISSN$$a0372-9664
000877283 0247_ $$2ISSN$$a0942-9352
000877283 0247_ $$2ISSN$$a2196-7156
000877283 0247_ $$2Handle$$a2128/25236
000877283 0247_ $$2WOS$$aWOS:000528279600008
000877283 037__ $$aFZJ-2020-02106
000877283 082__ $$a540
000877283 1001_ $$0P:(DE-HGF)0$$aZhang, Siyuan$$b0
000877283 245__ $$aSn-Doped Hematite for Photoelectrochemical Water Splitting: The Effect of Sn Concentration
000877283 260__ $$aBerlin$$bDe Gruyter$$c2020
000877283 3367_ $$2DRIVER$$aarticle
000877283 3367_ $$2DataCite$$aOutput Types/Journal article
000877283 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594114260_23492
000877283 3367_ $$2BibTeX$$aARTICLE
000877283 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877283 3367_ $$00$$2EndNote$$aJournal Article
000877283 520__ $$aHematite-based photoanodes have been intensively studied for photoelectrochemical water oxidation. The n-type dopant Sn has been shown to benefit the activity of hematite anodes. We demonstrate in this study that Sn-doped hematite thin films grown by atomic layer deposition can achieve uniform doping across the film thickness up to at least 32 mol%, far exceeding the equilibrium solubility limit of less than 1 mol%. On the other hand, with the introduction of Sn doping, the hematite crystallite size decreases and many twin boundaries form in the film, which may contribute to the low photocurrent observed in these films. Density functional theory calculations with a Hubbard U term show that Sn doping has multiple effects on the hematite properties. With increasing Sn4+ content, the Fe2+ concentration increases, leading to a reduction of the band gap and finally to a metallic state. This goes hand in hand with an increase of the lattice constant.
000877283 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877283 588__ $$aDataset connected to CrossRef
000877283 7001_ $$0P:(DE-HGF)0$$aHajiyani, Hamidreza$$b1
000877283 7001_ $$0P:(DE-HGF)0$$aHufnagel, Alexander G.$$b2
000877283 7001_ $$0P:(DE-HGF)0$$aKampmann, Jonathan$$b3
000877283 7001_ $$0P:(DE-HGF)0$$aBreitbach, Benjamin$$b4
000877283 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b5
000877283 7001_ $$0P:(DE-Juel1)171780$$aFattakhova, Dina$$b6
000877283 7001_ $$0P:(DE-HGF)0$$aPentcheva, Rossitza$$b7
000877283 7001_ $$0P:(DE-HGF)0$$aScheu, Christina$$b8$$eCorresponding author
000877283 773__ $$0PERI:(DE-600)2020854-6$$a10.1515/zpch-2019-1482$$gVol. 234, no. 4, p. 683 - 698$$n4$$p683 - 698$$tZeitschrift für physikalische Chemie$$v234$$x2196-7156$$y2020
000877283 8564_ $$uhttps://juser.fz-juelich.de/record/877283/files/%5B21967156%20-%20Zeitschrift%20f%C3%BCr%20Physikalische%20Chemie%5D%20Sn-Doped%20Hematite%20for%20Photoelectrochemical%20Water%20Splitting%20The%20Effect%20of%20Sn%20Concentration.pdf$$yOpenAccess
000877283 8564_ $$uhttps://juser.fz-juelich.de/record/877283/files/Zhang%20ZPC_Sub.pdf$$yOpenAccess
000877283 8564_ $$uhttps://juser.fz-juelich.de/record/877283/files/Zhang%20ZPC_Sub.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877283 909CO $$ooai:juser.fz-juelich.de:877283$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b6$$kFZJ
000877283 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877283 9141_ $$y2020
000877283 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000877283 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877283 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bZ PHYS CHEM : 2018$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877283 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000877283 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000877283 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877283 9801_ $$aFullTexts
000877283 980__ $$ajournal
000877283 980__ $$aVDB
000877283 980__ $$aUNRESTRICTED
000877283 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877283 981__ $$aI:(DE-Juel1)IMD-2-20101013