001     877283
005     20240711085622.0
024 7 _ |a 10.1515/zpch-2019-1482
|2 doi
024 7 _ |a 0044-3336
|2 ISSN
024 7 _ |a 0372-8501
|2 ISSN
024 7 _ |a 0372-9656
|2 ISSN
024 7 _ |a 0372-9664
|2 ISSN
024 7 _ |a 0942-9352
|2 ISSN
024 7 _ |a 2196-7156
|2 ISSN
024 7 _ |a 2128/25236
|2 Handle
024 7 _ |a WOS:000528279600008
|2 WOS
037 _ _ |a FZJ-2020-02106
082 _ _ |a 540
100 1 _ |a Zhang, Siyuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Sn-Doped Hematite for Photoelectrochemical Water Splitting: The Effect of Sn Concentration
260 _ _ |a Berlin
|c 2020
|b De Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594114260_23492
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hematite-based photoanodes have been intensively studied for photoelectrochemical water oxidation. The n-type dopant Sn has been shown to benefit the activity of hematite anodes. We demonstrate in this study that Sn-doped hematite thin films grown by atomic layer deposition can achieve uniform doping across the film thickness up to at least 32 mol%, far exceeding the equilibrium solubility limit of less than 1 mol%. On the other hand, with the introduction of Sn doping, the hematite crystallite size decreases and many twin boundaries form in the film, which may contribute to the low photocurrent observed in these films. Density functional theory calculations with a Hubbard U term show that Sn doping has multiple effects on the hematite properties. With increasing Sn4+ content, the Fe2+ concentration increases, leading to a reduction of the band gap and finally to a metallic state. This goes hand in hand with an increase of the lattice constant.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hajiyani, Hamidreza
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hufnagel, Alexander G.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kampmann, Jonathan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Breitbach, Benjamin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bein, Thomas
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fattakhova, Dina
|0 P:(DE-Juel1)171780
|b 6
700 1 _ |a Pentcheva, Rossitza
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Scheu, Christina
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1515/zpch-2019-1482
|g Vol. 234, no. 4, p. 683 - 698
|0 PERI:(DE-600)2020854-6
|n 4
|p 683 - 698
|t Zeitschrift für physikalische Chemie
|v 234
|y 2020
|x 2196-7156
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877283/files/%5B21967156%20-%20Zeitschrift%20f%C3%BCr%20Physikalische%20Chemie%5D%20Sn-Doped%20Hematite%20for%20Photoelectrochemical%20Water%20Splitting%20The%20Effect%20of%20Sn%20Concentration.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877283/files/Zhang%20ZPC_Sub.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877283/files/Zhang%20ZPC_Sub.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877283
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171780
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b Z PHYS CHEM : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21