000877297 001__ 877297
000877297 005__ 20240711085622.0
000877297 0247_ $$2doi$$a10.3762/bxiv.2019.24.v1
000877297 0247_ $$2Handle$$a2128/27170
000877297 037__ $$aFZJ-2020-02113
000877297 082__ $$a620
000877297 1001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b0$$eCorresponding author
000877297 245__ $$aFlexible freestanding MoS 2 based paper-like material for energy conversion and storage
000877297 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2019
000877297 3367_ $$2DRIVER$$aarticle
000877297 3367_ $$2DataCite$$aOutput Types/Journal article
000877297 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1613395019_25369
000877297 3367_ $$2BibTeX$$aARTICLE
000877297 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877297 3367_ $$00$$2EndNote$$aJournal Article
000877297 520__ $$aConstruction of flexible electrochemical devices for energy storage and generation is of utmost importance in the modern society. In this article, we report the synthesis of flexible MoS             2             based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge-discharge measurements were used to determine the capacitance of our paper material. Highest capacitance of 33 mF cm             -2             was achieved at current density of 1 mA cm             -2             showing potential application in supercapacitors. We further used the material as a cathode for hydrogen evolution reaction (HER) with an onset potential of ca. -0.2 V             vs             RHE. The onset potential was even lower (             ca             . -0.1 V             vs             RHE) after treatment with n-butyllithium suggesting the introduction of new active sites. Finally, a potential use in Lithium ion batteries (LIB) was examined. Our material can be used directly without any binder, additive carbon or copper current collector and delivers specific capacity of 740 mA h g             -1             at a current density of 0.1 A g             -1             . After 40 cycles at this current density the material still reached a capacity retention of 91%. Our findings show that this composite material could find application in electrochemical energy storage and generation devices where high flexibility and mechanical strength are desired.
000877297 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877297 588__ $$aDataset connected to CrossRef
000877297 7001_ $$0P:(DE-HGF)0$$aLuxa, Jan$$b1
000877297 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b2
000877297 7001_ $$0P:(DE-Juel1)171780$$aFattakhova, Dina$$b3
000877297 7001_ $$0P:(DE-HGF)0$$aBousa, Daniel$$b4
000877297 7001_ $$00000-0002-1391-4448$$aSofer, Zdenek$$b5
000877297 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bxiv.2019.24.v1$$p1488-1496$$tBeilstein journal of nanotechnology$$v10$$x2190-4286$$y2019
000877297 8564_ $$uhttps://juser.fz-juelich.de/record/877297/files/Flexible%20freestanding%20MoS2-based%20composite%20paper%20for%20energy%20conversion%20and%20storage.pdf$$yOpenAccess
000877297 909CO $$ooai:juser.fz-juelich.de:877297$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b0$$kFZJ
000877297 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b3$$kFZJ
000877297 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877297 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000877297 9141_ $$y2021
000877297 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-21
000877297 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877297 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2018$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877297 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-21
000877297 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-21
000877297 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877297 9801_ $$aFullTexts
000877297 980__ $$ajournal
000877297 980__ $$aVDB
000877297 980__ $$aUNRESTRICTED
000877297 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877297 981__ $$aI:(DE-Juel1)IMD-2-20101013