001     877297
005     20240711085622.0
024 7 _ |a 10.3762/bxiv.2019.24.v1
|2 doi
024 7 _ |a 2128/27170
|2 Handle
037 _ _ |a FZJ-2020-02113
082 _ _ |a 620
100 1 _ |a Zoller, Florian
|0 P:(DE-Juel1)179146
|b 0
|e Corresponding author
245 _ _ |a Flexible freestanding MoS 2 based paper-like material for energy conversion and storage
260 _ _ |a Frankfurt, M.
|c 2019
|b Beilstein-Institut zur Förderung der Chemischen Wissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1613395019_25369
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Construction of flexible electrochemical devices for energy storage and generation is of utmost importance in the modern society. In this article, we report the synthesis of flexible MoS 2 based composite paper by high-energy shear force milling and simple vacuum filtration. This composite material combines high flexibility, mechanical strength and good chemical stability. Chronopotentiometric charge-discharge measurements were used to determine the capacitance of our paper material. Highest capacitance of 33 mF cm -2 was achieved at current density of 1 mA cm -2 showing potential application in supercapacitors. We further used the material as a cathode for hydrogen evolution reaction (HER) with an onset potential of ca. -0.2 V vs RHE. The onset potential was even lower ( ca . -0.1 V vs RHE) after treatment with n-butyllithium suggesting the introduction of new active sites. Finally, a potential use in Lithium ion batteries (LIB) was examined. Our material can be used directly without any binder, additive carbon or copper current collector and delivers specific capacity of 740 mA h g -1 at a current density of 0.1 A g -1 . After 40 cycles at this current density the material still reached a capacity retention of 91%. Our findings show that this composite material could find application in electrochemical energy storage and generation devices where high flexibility and mechanical strength are desired.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Luxa, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bein, Thomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fattakhova, Dina
|0 P:(DE-Juel1)171780
|b 3
700 1 _ |a Bousa, Daniel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sofer, Zdenek
|0 0000-0002-1391-4448
|b 5
773 _ _ |a 10.3762/bxiv.2019.24.v1
|0 PERI:(DE-600)2583584-1
|p 1488-1496
|t Beilstein journal of nanotechnology
|v 10
|y 2019
|x 2190-4286
856 4 _ |u https://juser.fz-juelich.de/record/877297/files/Flexible%20freestanding%20MoS2-based%20composite%20paper%20for%20energy%20conversion%20and%20storage.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:877297
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171780
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BEILSTEIN J NANOTECH : 2018
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-21
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-21
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21