000877299 001__ 877299
000877299 005__ 20240711085622.0
000877299 0247_ $$2doi$$a10.1002/adfm.201706529
000877299 0247_ $$2ISSN$$a1057-9257
000877299 0247_ $$2ISSN$$a1099-0712
000877299 0247_ $$2ISSN$$a1616-301X
000877299 0247_ $$2ISSN$$a1616-3028
000877299 0247_ $$2Handle$$a2128/26423
000877299 0247_ $$2altmetric$$aaltmetric:43434203
000877299 0247_ $$2WOS$$aWOS:000434207800005
000877299 037__ $$aFZJ-2020-02115
000877299 082__ $$a530
000877299 1001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b0$$eCorresponding author
000877299 245__ $$aMaking Ultrafast High-Capacity Anodes for Lithium-Ion Batteries via Antimony Doping of Nanosized Tin Oxide/Graphene Composites
000877299 260__ $$aWeinheim$$bWiley-VCH$$c2018
000877299 3367_ $$2DRIVER$$aarticle
000877299 3367_ $$2DataCite$$aOutput Types/Journal article
000877299 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607439247_11439
000877299 3367_ $$2BibTeX$$aARTICLE
000877299 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877299 3367_ $$00$$2EndNote$$aJournal Article
000877299 520__ $$aTin oxide‐based materials attract increasing attention as anodes in lithium‐ion batteries due to their high theoretical capacity, low cost, and high abundance. Composites of such materials with a carbonaceous matrix such as graphene are particularly promising, as they can overcome the limitations of the individual materials. The fabrication of antimony‐doped tin oxide (ATO)/graphene hybrid nanocomposites is described with high reversible capacity and superior rate performance using a microwave assisted in situ synthesis in tert‐butyl alcohol. This reaction enables the growth of ultrasmall ATO nanoparticles with sizes below 3 nm on the surface of graphene, providing a composite anode material with a high electric conductivity and high structural stability. Antimony doping results in greatly increased lithium insertion rates of this conversion‐type anode and an improved cycling stability, presumably due to the increased electrical conductivity. The uniform composites feature gravimetric capacity of 1226 mAh g−1 at the charging rate 1C and still a high capacity of 577 mAh g−1 at very high charging rates of up to 60C, as compared to 93 mAh g−1 at 60C for the undoped composite synthesized in a similar way. At the same time, the antimony‐doped anodes demonstrate excellent stability with a capacity retention of 77% after 1000 cycles.
000877299 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000877299 588__ $$aDataset connected to CrossRef
000877299 7001_ $$0P:(DE-HGF)0$$aPeters, Kristina$$b1
000877299 7001_ $$0P:(DE-HGF)0$$aZehetmaier, Peter M.$$b2
000877299 7001_ $$0P:(DE-HGF)0$$aZeller, Patrick$$b3
000877299 7001_ $$0P:(DE-HGF)0$$aDöblinger, Markus$$b4
000877299 7001_ $$0P:(DE-HGF)0$$aBein, Thomas$$b5
000877299 7001_ $$0P:(DE-HGF)0$$aSofer, Zdeneˇk$$b6
000877299 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b7$$eCorresponding author
000877299 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.201706529$$gVol. 28, no. 23, p. 1706529 -$$n23$$p1706529 -$$tAdvanced functional materials$$v28$$x1616-301X$$y2018
000877299 8564_ $$uhttps://juser.fz-juelich.de/record/877299/files/adfm.201706529.pdf$$yRestricted
000877299 8564_ $$uhttps://juser.fz-juelich.de/record/877299/files/Zoller_AFM_REV.PDF$$yPublished on 2018-03-25. Available in OpenAccess from 2019-03-25.
000877299 909CO $$ooai:juser.fz-juelich.de:877299$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b0$$kFZJ
000877299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ
000877299 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000877299 9141_ $$y2020
000877299 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877299 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877299 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877299 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877299 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000877299 9801_ $$aFullTexts
000877299 980__ $$ajournal
000877299 980__ $$aVDB
000877299 980__ $$aUNRESTRICTED
000877299 980__ $$aI:(DE-Juel1)IEK-1-20101013
000877299 981__ $$aI:(DE-Juel1)IMD-2-20101013