000877302 001__ 877302
000877302 005__ 20240610120119.0
000877302 0247_ $$2doi$$a10.1039/D0SM00571A
000877302 0247_ $$2ISSN$$a1744-683X
000877302 0247_ $$2ISSN$$a1744-6848
000877302 0247_ $$2Handle$$a2128/25317
000877302 0247_ $$2altmetric$$aaltmetric:81664805
000877302 0247_ $$2pmid$$apmid:32424390
000877302 0247_ $$2WOS$$aWOS:000537135300013
000877302 037__ $$aFZJ-2020-02118
000877302 082__ $$a530
000877302 1001_ $$0P:(DE-Juel1)172017$$aMousavi, Mahdiyeh$$b0$$ufzj
000877302 245__ $$aWall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study
000877302 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2020
000877302 3367_ $$2DRIVER$$aarticle
000877302 3367_ $$2DataCite$$aOutput Types/Journal article
000877302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595245025_11741
000877302 3367_ $$2BibTeX$$aARTICLE
000877302 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877302 3367_ $$00$$2EndNote$$aJournal Article
000877302 520__ $$aMicroswimmers such as E. coli bacteria accumulate and exhibit an intriguing dynamics near walls, governed by hydrodynamic and steric interactions. Insight into the underlying mechanisms and predominant interactions demand a detailed characterization of the entrapment process. We employ a mesoscale hydrodynamics simulation approach to study entrapment of an E. coli-type cell at a no-slip wall. The cell is modeled by a spherocylindrical body with several explicit helical flagella. Three stages of the entrapment process can be distinguished: the approaching regime, where a cell swims toward a wall on a nearly straight trajectory; a scattering regime, where the cell touches the wall and reorients; and a surface-swimming regime. Our simulations show that steric interactions may dominate the entrapment process, yet, hydrodynamic interactions slow down the adsorption dynamics close to the boundary and imply a circular motion on the wall. The locomotion of the cell is characterized by a strong wobbling dynamics, with cells preferentially pointing toward the wall during surface swimming.
000877302 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000877302 588__ $$aDataset connected to CrossRef
000877302 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b1$$eCorresponding author
000877302 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b2$$eCorresponding author
000877302 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/D0SM00571A$$gVol. 16, no. 20, p. 4866 - 4875$$n20$$p4866 - 4875$$tSoft matter$$v16$$x1744-6848$$y2020
000877302 8564_ $$uhttps://juser.fz-juelich.de/record/877302/files/mousavi_gompper_winkler_sm_16.4866.2020-1.pdf$$yRestricted
000877302 8564_ $$uhttps://juser.fz-juelich.de/record/877302/files/E-coli.pdf$$yPublished on 2020-05-08. Available in OpenAccess from 2021-05-08.
000877302 8564_ $$uhttps://juser.fz-juelich.de/record/877302/files/E-coli.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-08. Available in OpenAccess from 2021-05-08.
000877302 8564_ $$uhttps://juser.fz-juelich.de/record/877302/files/mousavi_gompper_winkler_sm_16.4866.2020-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877302 909CO $$ooai:juser.fz-juelich.de:877302$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172017$$aForschungszentrum Jülich$$b0$$kFZJ
000877302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b1$$kFZJ
000877302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b2$$kFZJ
000877302 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000877302 9141_ $$y2020
000877302 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877302 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-02-27$$wger
000877302 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2018$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000877302 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000877302 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000877302 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000877302 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000877302 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x1
000877302 9801_ $$aFullTexts
000877302 980__ $$ajournal
000877302 980__ $$aVDB
000877302 980__ $$aUNRESTRICTED
000877302 980__ $$aI:(DE-Juel1)IAS-2-20090406
000877302 980__ $$aI:(DE-Juel1)IBI-5-20200312
000877302 981__ $$aI:(DE-Juel1)IAS-2-20090406