Home > Publications database > Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study > print |
001 | 877302 | ||
005 | 20240610120119.0 | ||
024 | 7 | _ | |a 10.1039/D0SM00571A |2 doi |
024 | 7 | _ | |a 1744-683X |2 ISSN |
024 | 7 | _ | |a 1744-6848 |2 ISSN |
024 | 7 | _ | |a 2128/25317 |2 Handle |
024 | 7 | _ | |a altmetric:81664805 |2 altmetric |
024 | 7 | _ | |a pmid:32424390 |2 pmid |
024 | 7 | _ | |a WOS:000537135300013 |2 WOS |
037 | _ | _ | |a FZJ-2020-02118 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Mousavi, Mahdiyeh |0 P:(DE-Juel1)172017 |b 0 |u fzj |
245 | _ | _ | |a Wall entrapment of peritrichous bacteria: a mesoscale hydrodynamics simulation study |
260 | _ | _ | |a London |c 2020 |b Royal Soc. of Chemistry |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1595245025_11741 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Microswimmers such as E. coli bacteria accumulate and exhibit an intriguing dynamics near walls, governed by hydrodynamic and steric interactions. Insight into the underlying mechanisms and predominant interactions demand a detailed characterization of the entrapment process. We employ a mesoscale hydrodynamics simulation approach to study entrapment of an E. coli-type cell at a no-slip wall. The cell is modeled by a spherocylindrical body with several explicit helical flagella. Three stages of the entrapment process can be distinguished: the approaching regime, where a cell swims toward a wall on a nearly straight trajectory; a scattering regime, where the cell touches the wall and reorients; and a surface-swimming regime. Our simulations show that steric interactions may dominate the entrapment process, yet, hydrodynamic interactions slow down the adsorption dynamics close to the boundary and imply a circular motion on the wall. The locomotion of the cell is characterized by a strong wobbling dynamics, with cells preferentially pointing toward the wall during surface swimming. |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Gompper, Gerhard |0 P:(DE-Juel1)130665 |b 1 |e Corresponding author |
700 | 1 | _ | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1039/D0SM00571A |g Vol. 16, no. 20, p. 4866 - 4875 |0 PERI:(DE-600)2191476-X |n 20 |p 4866 - 4875 |t Soft matter |v 16 |y 2020 |x 1744-6848 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/877302/files/mousavi_gompper_winkler_sm_16.4866.2020-1.pdf |y Restricted |
856 | 4 | _ | |y Published on 2020-05-08. Available in OpenAccess from 2021-05-08. |u https://juser.fz-juelich.de/record/877302/files/E-coli.pdf |
856 | 4 | _ | |y Published on 2020-05-08. Available in OpenAccess from 2021-05-08. |x pdfa |u https://juser.fz-juelich.de/record/877302/files/E-coli.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/877302/files/mousavi_gompper_winkler_sm_16.4866.2020-1.pdf?subformat=pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:877302 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172017 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130665 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131039 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-27 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-27 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-27 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-27 |
915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOFT MATTER : 2018 |d 2020-02-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-02-27 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-27 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-27 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-2-20090406 |k IAS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBI-5-20200312 |k IBI-5 |l Theoretische Physik der Lebenden Materie |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|