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Microswimmers such as E. Coli bacteria accumulate and exhibit an intriguing dynamics near walls,

governed by hydrodynamic and steric interactions. Insight into the underlying mechanisms and

predominant interactions demand a detailed characterization of the entrapment process. We em-

ploy a mesoscale hydrodynamics simulation approach to study entrapment of a E. coli-type cell at

a no-slip wall. The cell is modeled by a spherocylindrical body with several explicit helical flagella.

Three stages of the entrapment process can be distinguished: the approaching regime, where

a cell swims toward the wall on a nearly straight trajectory; a scattering regime, where the cell

touches the wall, with an reorientation of the cell by a torque originating from steric interactions;

and a surface-swimming regime. Our simulations show that steric interactions may dominate the

entrapment process, yet, hydrodynamic interactions slow down the adsorption dynamics close to

the boundary and imply a circular motion on the wall. The locomotion of the cell is characterized

by a strong wobbling dynamics, with cells preferentially pointing toward the wall.

1 Introduction

Surfaces and walls play an essential role in the life cycle of bacte-

ria, because in the wild, bacteria are only rarely isolated and free-

swimming, but are primarily associated with surfaces.1–3 In fact,

bacteria typically spend most of their life time in a biofilm, rather

than as planktonic cell in the bulk fluid, yet biofilm formation

is initiated by an initial contact of a planktonic cell with a sur-

face.4,5 Bacteria approaching a wall experience surface-specific

interactions, such as hydrodynamic forces, adhesive forces, steric

interactions, etc., which govern the adsorption process and their

surface dynamics. The importance of the various interactions for

bacteria entrapment has been addressed experimentally, theoreti-

cally, and by simulations. Studies on wall entrapment of microor-

ganisms, such as non-tumbling E. coli6 and bull spermatozoa7,

reveal an enhanced concentration at a surface. This near-wall

accumulation of cells can be explained by two distinct mecha-

nisms.8–10 On the one hand, hydrodynamic interactions between

the microswimmer and the wall lead to an attractive interac-

tion and, for E.coli-type bacteria, a torque trying to align the mi-

croswimmer with the surface.6,11 On the other hand, neglecting

explicit hydrodynamic interactions, the cell body of a flagellated

microswimmer, e.g., E. coli, moving along a no-slip wall at con-

stant height experiences viscous drag and a torque rotates the

body.11–13 At the same time, the flagellar bundle is exposed to
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this torque, which rotates it away from the wall, and a second

torque originated from the coupling to the cell translational mo-

tion. Since the overall system is torque free, a finite inclination

angle of the flagellum is obtained with the cell swimming toward

the wall.2,11,14 Finally, in addition to the hydrodynamic mecha-

nisms for the near wall accumulation, steric interactions with a

wall and cell rotational Brownian motion alone can also produce

wall accumulation at finite microswimmer density.15–17

Despite considerable efforts, the process of microswimmer en-

trapment at walls is by no means satisfactorily described by

explicit modeling so far. Various numerical studies, using the

boundary-element method and representing a bacterium by a

rigid spheroidal body and the flagella bundle by an attached

aligned thin helical cylinder, predict stable configurations of cells

swimming at a planar wall.18,19 Cells are found to maintain a sta-

ble height above a surface with an inclination angle, where the

bacterium’s body points away from the wall. Moreover, recent

studies on bacteria-like polar swimmer, consisting of a spheroidal

body and an active propelling rod, predict a critical swimmer

size for entrapment.8 Regardless of the cell body shape, organ-

isms with sufficiently long flagella—about twice the cell-body

diameter—are expected to exhibit a positive inclination angle

with the head pointing toward the boundary, whereas for short

enough flagella, they are orientated away from the wall. This ef-

fect can be traced back to a faster increase of the Stokeslet dipole

and quadrupole strengths with increasing rod length compared

to the source dipole strength.8 Mesoscale hydrodynamics simula-

tions of a mechano-elastic E. coli-type model with several explicit
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capturing torsional fluctuations.

Introducing the orthogonal bond vectors bbb1
n = rrrin+1−rrrin+3, bbb2

n =

rrrin+2 − rrrin+4, and bbb3
n = rrrin+1 − rrrin for the bonds along the contour

of the flagellum, we can define orthonormal triads {eee1
n,eee

2
n,eee

3
n},

n = 1, . . . ,N, where eeeα
n = bbbα

n /|bbb
α
n |, α ∈ {1,2,3} (cf. Fig. 1). The

local elastic deformation of a flagellum proceeds in two steps: (i)

the rotation of {eee1
n,eee

2
n,eee

3
n} around eee3

n by a twist angle ϕn and (ii)

the rotation of the twisted triad {ẽee1
n, ẽee

2
n, ẽee

3
n} by a bending angle ϑn

around the normal nnnn = (eee3
n × eee3

n+1
)/|eee3

n × eee3
n+1

| to the plane de-

fined by the contour bonds bbb3
n and bbb3

n+1. The elastic deformation

energy is then

Uel =
1

2

3

∑
α=1

Kα
el

N−1

∑
n=1

(Ωα
n −Ωα

e )
2, (2)

where K1
el = K2

el is the bending modulus, K3
el the twist modulus,

and ΩΩΩn = Ω1
neee1

n+Ω2
neee2

n+Ω3
neee3

n ≡ ϑnnnnn+ϕneee3
n the strain vector. The

parameters Ωα
e define the equilibrium geometry of the model flag-

ellum and are chosen to recover the shape of an E. coli flagellum

in the normal state.48

A flagellum is attached to the body by randomly choosing a

body particle as its first contour particle. The rotation of the flag-

ellum is induced by a motor torque TTT decomposed into a force

couple FFF and −FFF acting on particles i1 +2 and i1 +4 (TTT = bbb2
1 ×FFF

with FFF parallel to bbb1
1), or equivalently i1+1 and i1+3 (TTT = bbb1

1×FFF

with FFF parallel to bbb2
1). Moreover, an opposite torque −TTT is ex-

erted on two body particles non-aligned with the body axis and

on different circles in the vicinity of the anchoring point. Hence,

the bacterium is force and torque free. A repulsive harmonic po-

tential

Uex =

{

1
2

Kex(r− rex)
2 r < rex

0 otherwise
(3)

is used to prevent flagella crossing and their penetration into the

cell body. Here, r is the closest distance between contour bond

segments of different flagella and the distance to the body-center

particles. We set rex = 0.25a and rex = (d +a)/2 for the flagellum-

flagellum and flagellum-body interactions, respectively.

The forces resulting from the potentials (1)–(3) and the forces

induced by the torques TTT and −TTT determine the dynamics of the

bacterium, which is described by Newton’s equation of motion.

The latter are solved by the velocity Verlet integration scheme.49

2.2 Fluid model: multiparticle collision dynamics

The fluid is modeled as a collection of point particles of mass m

with position rrri and velocity vvvi. The dynamics of the particles pro-

ceeds by alternating streaming and collision steps.28–30 During a

streaming step, particles move ballistically over a time interval

∆t, denoted as collision time, and the their positions are updated

according to

rrri(t +∆t) = rrri(t)+ vvvi(t)∆t. (4)

In the collision step, all particles are sorted in cubic collision cells

of length a. Subsequently, the relative velocity of each particle,

with respect to the center-of-mass velocity of the considered colli-

sion cell, is rotated by a fixed angle α around a randomly oriented

axis, hence, their velocities after the collision are50

vvvi(t +∆t) = vvvcm(t)+R(α)
[

vvvi(t)− vvvcm(t)
]

− rrric

×
[

mI
−1 ∑

j∈cell

(

rrr jc(t)× [vvv jc(t)−R(α)vvv jc(t)]
)

]

, (5)

where R(α) is the rotation operator, vvvcm the center-of-mass veloc-

ity, rrr jc = rrr j − rrrcm, vvv jc = vvv j −vvvcm, and I the moment-of-inertia ten-

sor of the particles in the center-of-mass reference frame of the

collision cell of particle i. The collision rule (5) conserves both

linear and angular momentum in each cell.50–52 Discretization in

collision cells implies violation of Galilean invariance, which is

reestablished by a random shift of the collision-cell grid after ev-

ery streaming step.53 A constant temperature is maintained by a

collision-cell-based, local Maxwellian thermostat, where the rela-

tive velocities of the particles in a collision cell are scaled accord-

ing to the Maxwell-Boltzmann scaling (MBS) method.54

2.3 Coupling of bacterium and MPC fluid

The coupling between the MPC fluid and the bacterium is

achieved in the MPC collision step by treating the points of the

bacterium on equal footing with the MPC particles, i.e., their ve-

locities are also rotated according Eq. (5) to ensure momentum

exchange between them and the fluid.21,27,55 Here, the center-

of-mass velocity of a collision cell is given by

vvvcm =
1

mNc +MNc
c

(

Nc

∑
i=1

mvvvi +
Nc

c

∑
j=1

Mvvvb
j

)

, (6)

where, Nc
c is the number of mass points of a bacterium in the

considered collision cell. Note that the cell body is penetrable

for fluid particles by this coupling. However, this still provides a

no-slip boundary condition on the body surface.56

2.4 Wall interaction

The fluid is confined between two walls parallel to the xz plane of

the Cartesian reference frame. No-slip boundary conditions are

implemented by employing the bounce-back rule for MPC parti-

cles and by taking into account wall phantom particles.30,54,57

To avoid direct wall contact, a cell experiences the repulsive

Lennard-Jones potential (wall at y = 0)

UW =











4kBT

[

(

σ

y− y′

)12

−

(

σ

y− y′

)6

+
1

4

]

y− y′ < yc

0 otherwise

,

(7)

where y is either the distance between a flagellum contour par-

ticle and the wall, or that of a body center-line particles and the

wall. Hence, y′ = d/2 for cell body and y′ = 0 for a flagellum

particle.

2.5 Parameters

We choose K1
el = K2

el = K3
el = 5× 104kBT within the range of ex-

perimentally measured values of the flagellar filaments.26,47,48
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above the wall. To account for cell body and flagellar bundle, we

use the body length for y= lB, which is approximately equal to the

hydrodynamic radius of the cell.44 With the value p = 2.2pNµm

for the force dipole and γ = 2.2 for the aspect ratio of the cell

body, Eq. (11) yields Ωzτ̂ ≈ −0.8rad ≈ −45◦ for θi = 45◦. This

value is approximately 3 times larger than the change in the an-

gle obtained in simulations, 15◦, over this time scale, but it is on

the right order of magnitude. Hence, hydrodynamic interactions

between the swimmer flow field and the wall might play a role in

the reorientation dynamics during surface scattering, in contrast

to conclusions based on experiments.23,44.

Steric interactions yield reorientation of the cell after it touched

a wall. While interacting with the wall, the cell experiences a

repulsive normal force, which is F⊥
s = −γT v̄sinθi, i.e., the cell

is no longer force free; γT is the translational friction coeffi-

cient. With the assumption that the propulsion force acts on

the center of mass of the cell located at a distance lcm sepa-

rated from the cell-surface contact point, F⊥
s implies the torque

M = −γT v̄lcm sinθi cosθi. Then, the equation of motion γRθ̇i = M,

γR is the rotational friction coefficient, yields

d

dt
tanθi =−γi tanθi, (12)

and, thus, the time dependence

tanθi(t) = tanθi(0)e
−γit , (13)

where γi = γT v̄lcm/γR. Figure 3(b) shows a fit of Eq. (13) to the av-

erage of the simulation data. Evidently, the reorientation dynam-

ics is well described by Eq. (13) over the considered time interval

for γi = 0.6/τ̂ ≈ 3/s. (For the translation of simulation units to

physical units, cf. Ref.26.) Using the above theoretical expression

for γi, we find γi ≈ 7.5/s. Within the uncertainties in the param-

eters, this value agrees reasonably well with the fit. Moreover,

our values are in very good agreement with those obtained in the

experiments,23 where a fit yields γi ≡ κ ′ ≈ 4.9/s, and a theoretical

estimation κ ′ ≈ 6.3/s. Thus, the angular momentum, appearing

as a consequence of steric interaction as soon as a cell touches a

wall, can be responsible for cell reorientation, in agreement with

previous studies.23,44 However, no definite conclusion is possible

based in the simulation data, because of the wide uncertainty of

parameters entering the rather generic theoretically expressions.

For a more precise estimate, a more detailed theoretical approach

is needed.

3.3 Surface swimming

During stationary surface migration, the cells progress with their

body center-of-mass at nearly constant height. The center-of-mass

distribution function, Fig. 5(a), exhibits a peak at a value slightly

larger than the body diameter, d, and the width is approximately

d/2. This large surface separation can only be understood by

a significant wobbling dynamics, or a preferred alignment of the

body toward or away from the wall, because in a perfectly parallel

wall alignment state, the preferred distance should be ycm ≈ d/2.

Moreover, the figure suggest a weak dependence on the starting

orientation of the cell. The displayed differences result mainly

from lack of sufficient statistics.

Quantitatively, the strong variation of the body orientation is il-

lustrated in Fig. 5(b) for the two snapshots displayed in Figure 6.

The latter emphasize the large orientational variations due to the

particular (random) arrangement of flagella. In case of the larger

variations of θb, the distribution function exhibits two peaks in-

dicating a preferred orientation, which in three-dimension corre-

sponds to the swimming direction precessing on a cone. How-

ever, this does not affect the overall orientation of the cell, since

the average inclination angle is centered around zero with little

difference between the two realizations. The distribution func-

tion of the inclination angle is presented in Fig. 5(c). Despite the

broad distribution of inclination angles with negative values due

to wobbling, the overall distribution function depends very little

on the initial angle θs, as it should be expected, and exhibits a

maximum at a positive value. Again, deviations between data for

different initial values are of statistical origin. Hence, our sim-

ulations reveal a preferred cell orientation toward the wall, in

agreement with experimental results22,23 and simulations,21 but

in contrast to theoretical calculations for a straight, no-wobbling

cell,18,19 which predict an orientation away from the wall.

Interestingly, the large variations in body orientation have little

effect on the orientation of the flagella bundle, and hence the

overall cell orientation. Evidently, the bundle is quite stable and

its rotation dictates the cell-body dynamics rather than vice versa.

To quantify the wobbling motion, we introduce the wobbling

angle θw as the angle between the major axis of the body and

the cell’s swimming direction (main axis of the cell’s inertia ten-

sor). Figure 7(a) displays the distribution function P(θw) of the

wobbling angle for the various realizations. Evidently, we obtain

a very broad distribution with the mean value θw = 46.2°±17.8°.

Experiments yield the smaller average angle θw ≈ 30◦, although

the range of angles is comparable.23 Similarly, simulations of long

and highly flagellated cells yield an average value of approxi-

mately 30◦.21 Interestingly, we find a roughly bimodal distribu-

tion with a peak at about 10◦ and a very broad peak at about

55◦, separated by a pronounced gap at 20◦. This could be related

to the preferentially organize of the bundle, which is rather well

aligned with the cell body, or rather oblique to it. This is in con-

trast to experimental distributions, which show a high probability

for lower angles < 20◦ and no gap. The discrepancy may be a con-

sequence of the chosen fixed number of flagella, whereas E. coli

planktonic cells possess approximately 4−7 flagella. Simulations

of swarmer-type cells, with a larger number of flagella, show that

the number of flagella matters for bundle formation, and no gap

or high probability for small θw has been found.21 Thus, the role

of the number of flagella in bundle formation and orientation,

from a few to many, needs more detailed investigations.

The scatter plot in Fig. 7(b) collects mean values of the inclina-

tion and wobbling angle for the various realizations. For the mean

value over all realizations we find θi = 3.1°± 1.4°. As pointed

out before, the positive inclination angle is in agreement with

experiments,22,23 although our value is somewhat smaller. Sim-

ulation studies with a single flagellum aligned with the cell body

yield the inclination angle θi ≈ 10◦.70 The larger value could be

a consequence of the particular geometry of the applied E. coli
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Fig. 7 (a) Distribution function of the wobbling angle θw for the applied

realizations. (b) Scatter plot of the wobbling and inclination angle θi at the

wall (different initial angles and their various realizations). The dashed

lines indicate the average values.

flagella, flagella arrangement on the cell surface, formation of the

bundle, etc.21 Hence, simulation of a suitable ensemble and ex-

traction of meaning full averages is rather demanding, specifically

with a detailed bacterium model as employed in this study. Here,

many more in-depth studies are required to achieve a quantitative

understanding of swimming bacteria in bulk and at walls.

In summary, our simulations provide insight into the scattering

of flagellated bacteria at walls, in particular, into the relevance of

swimmer-wall hydrodynamic interactions. We hope that our re-

sults, specifically the importance of wobbling, will stimulate com-

parable experimental studies.
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