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The conformational and dynamical properties of active polymers in solution are determined by the nature
of the activity. Here, the behavior of polymers with self-propelled, active Brownian particle-type monomers
differs qualitatively from that of polymers with monomers driven externally by colored-noise forces. We
present simulation and theoretical results for polymers in solution in the presence of external active noise.
In simulations, a semiflexible bead-spring chain is considered, in analytical calculations, a continuous linear
wormlike chain. Activity is taken into account by independent monomer or site velocities, with orientations
changing in a diffusive manner. In simulations, hydrodynamic interactions (HIs) are taken into account by the
Rotne-Prager-Yamakawa tensor or by an implementation of the active polymer in the multiparticle-collision-
dynamics approach for fluids. To arrive at an analytical solution, the preaveraged Oseen tensor is employed.
The active process implies a dependence of the stationary-state properties on HIs via the polymer relaxation
times. With increasing activity, HIs lead to an enhanced swelling of flexible polymers, and the conformational
properties differ substantially from those of polymers with self-propelled monomers in the presence of HIs,
or free-draining polymers. The polymer mean-square displacement is enhanced by HIs. Over a wide range of
timescales, hydrodynamics leads to a subdiffusive regime of the site mean-square displacement for flexible
active polymers, with an exponent of 5/7, larger than that of the Rouse (1/2) and Zimm (2/3) models of passive
polymers.
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I. INTRODUCTION

Active matter is characterized by a continuous energy con-
sumption of its agents from internal or external sources, which
can be converted into directed motion [1]. The associated out-
of-equilibrium nature of active matter is the origin of fascinat-
ing phenomena, such as activity-driven phase separation or
large-scale collective motion, aspects absent in corresponding
passive systems [1–6]. A simple and generic model for a dry-
active-matter agent [7] is the active Brownian particle (ABP),
a hard-sphere- or hard-disk-type particle propelled in a body-
fixed direction, which changes in a diffusive manner [1,3,4,8–
16]. Computer simulations of ABP ensembles reveal motility-
induced phase separation (MIPS) [3,4,9–15], enhanced wall
accumulation [11,16,17], and an active pressure (denoted as
swim pressure) [18–22]. Additional fascinating structural and
dynamical properties can be expected from more complex
assemblies of active particles, such as dumbbells [23–29],
linear polymers [30–49], or other arrangements [50]. The
coupling of activity and internal degrees of freedom gives
rise to novel phenomena, such as an activity-induced polymer
collapse, typical in two dimensions, [31,32,47] or swelling
[32,33,38,42,44,46,51], and a polymer-length-dependent sup-
pression of phase separation [24,27]. This illustrates that
active soft matter is a promising new class of materials with
many as yet unexplored features [52,53].
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Nature provides a wide spectrum of systems, where prop-
erties are governed by the activity of filamentous, polymer-
like building blocks and structures. Linear polymers, such as
filamentous actin or microtubules of the cell cytoskeleton are
propelled by tread-milling and motor proteins [2,54–59]. Sim-
ilarly, in motility assays, filaments are propelled on carpets of
motor proteins anchored on a substrate [60–63]. Moreover,
the active dynamics of microtubules [64] or actin-filaments
[65] enhances the dynamics of chromosomal loci [66,67] and
chromatin [68]. A characteristic feature of biological cells
is the intrinsic mixture of active and passive components;
specifically the active cytoskeleton and a large variety of
passive colloidal and polymeric objects [46,69]. Due to an
accelerated dynamics of the stirred fluid in the cytoskeleton,
a large variety of embedded objects, such as vesicles, pas-
sive colloids, polymeric structures, experience an enhanced
stochastic motion, which implies an enhanced random motion
of tracer particles. Similarly, countless ATP-dependent enzy-
matic activity-induced mechanical fluctuations drive molec-
ular motion in the bacterial cytoplasm and the nucleus of
eukaryotic cells [66]. Moreover, self-propelled long swarming
bacteria, such as Proteus mirabilis in biofilms [70], appear
as semiflexible polymers, and rodlike objects are formed via
self-assembly, e.g., by dinoflagellates [71,72].

Synthetic active or activated colloidal polymers [48] are
nowadays synthesized in various ways. Assembly of active
chains of metal-dielectric Janus colloids (monomers) can be
achieved by imbalanced interactions, where simultaneously
the motility and the colloid interactions are controlled by an
AC electric field [73–75]. Electrohydrodynamic convection
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FIG. 1. Illustration of an active polymer. ABP monomers are
drive by persistent forces (indicated by arrows) whose temporal
orientation correlations decay exponentially.

rolls lead to self-assembled colloidal chains in a nematic
liquid crystal matrix and directed movement [76]. More-
over, chains of linked colloids, which are uniformly coated
with catalytic nanoparticles, have been synthesizes [77].
Hydrogen peroxide decomposition on the surfaces of the
colloidal monomers generates phoretic flows, and active hy-
drodynamic interactions between monomers results in an
enhanced diffusive motion [77].

Hydrodynamic interactions (HIs) play a major role for the
conformational and dynamical properties of active polymers.
As has been shown in simulations, the hydrodynamic cou-
pling between two polar externally driven filaments leads to
cooperative effects [36]. Polymers composed of self-propelled
ABPs shrink substantially in the presence of HIs at moderate
activities and swell at high activity [78], however, far less
extent than dry active polymers [42,44].

In this article, we explore the effect of external colored
noise, mimicking an active environment, on the properties
of semiflexible polymers in dilute solution by hydrodynamic
simulations and analytical theory. These kinds of active
polymers are different from polymers with self-propelled
monomers [48,78], as the active contribution is not force free,
but active forces give rise to Stokeslet flows. We analyze the
influence of the additional hydrodynamic flow field on the
conformational and dynamical polymer properties, in com-
parison to self-propelled polymers. We like to emphasize that
in the absence of HIs, the properties of active polymers with
externally driven and self-propelled monomers are identical
[42].

In simulations, the polymers are described as bead-
spring linear phantom or self-avoiding chains with ABP-type
monomers (cf. Fig. 1), which change their propulsion direc-
tion in a diffusive manner [42]. Hydrodynamic interactions
are taken into account through the Rotne-Prager-Yamakawa
hydrodynamic tensor [79,80]. Alternatively, the same poly-
mers are embedded in a multiparticle-collision dynamics fluid
[81,82]. The Gaussian semiflexible polymer model is adopted
for the analytical considerations [42,83,84], with active sites
modeled by an Ornstein-Uhlenbeck process [active Ornstein-
Uhlenbeck particle (AOUP)] [16,42,85], where the active
velocity vector changes in a diffusive manner; here the HIs
are included via the preaveraged Oseen tensor [86]. Monomer
Stokeslets arise from bond, bending, and excluded-volume
interactions between monomers, from thermal forces, and, in
particular, from active forces. Hence, we capture the long-

range character of HIs in polymers of a broad class of ex-
ternally driven active monomers.

Our studies reveal a decisive influence of hydrodynamic in-
teractions on the active polymer conformations and dynamics.
Externally driven flexible polymers monotonically swell with
increasing activity, in contrast to polymers with self-propelled
monomers [78]. Semiflexible polymers shrink at moderated
activities and swell for high activities. In the asymptotic limit
of large activities, the same stretching as for free-draining
active polymers is observed. The reason is the violation of
the fluctuation-dissipation theorem of the active processes,
which leads to the dependence of stationary-state properties
on the hydrodynamically modified relaxation times, however,
in a different and less dominant way as for polymers of
self-propelled monomers. The particular conformations are a
consequence of the timescale separation between the thermal
processes, dominating for zero or very weak activities, and the
active processes with hydrodynamically slowed-down relax-
ation times. The activity-dependent relaxation times also af-
fect the translation motion, and a subdiffusive time regime ap-
pears, where the monomer mean-square displacement (MSD)
in the polymer center-of-mass reference frame exhibits a
power-law dependence with the exponent γ ′ = 5/7, larger
than the Zimm value γ ′ = 2/3 of a passive polymer.

The manuscript is organized as follows. Section II de-
scribes the discrete model of the active polymer along with
the simulation approaches. The results of the simulations are
presented in Sec. III. The analytical approach is introduced
in Sec. IV. Analytical results for the conformational and
dynamical properties are discussed in Sec. V and Sec. VI,
respectively. Finally, Sec. VII summarizes our findings. The
Appendix provides asymptotic results for the stretching
coefficient.

II. COMPUTER SIMULATIONS

A. Model of active polymers

The semiflexible polymers are composed of Nm active
Brownian particles (i = 1, . . . , Nm), which are linearly con-
nected by a harmonic bond potential, Ul , and experience
bond-orientational restrictions by the bending potential Ub.
Excluded-volume interactions are taken into account by the
purely repulsive Lennard-Jones potential ULJ . Explicitly, the
potentials are [78]

Ul =
κl

2

Nm
∑

i=2

(|Ri| − l )2, (1)

Ub =
κb

2

Nm−1
∑

i=2

(Ri+1 − Ri )
2, (2)

ULJ =











4ǫ
∑

i< j

[

(

σ

ri j

)12

−
(

σ

ri j

)6

+
1

4

]

, ri j <
6
√

2σ

0, ri j >
6
√

2σ

.

(3)

The coefficients κl and κb are the bond and bending constants,
respectively, and l is the equilibrium length of the bond
vector Ri+1 = ri+1 − ri. The vector ri j = ri − r j is the vector
between monomers i and j, and ri j = |ri j |. The energy ǫ
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measures the strength of the repulsive potential and σ defines
the particle diameter. In addition, every monomer experience
an active force

Fa
i = F aei(t ) (4)

of constant magnitude F a. We consider this as an external
force in contrast to the self-propulsion force of Ref. [78]. As a
consequence, an individual monomer in a fluid is no longer ac-
tive force free, but the latter gives rise to a Stokeslet [1]. In any
case—for polymers with self-propelled or externally driven
monomers—Stokeslets appear by the forces of the potentials
(1)–(3) and thermal noise. As for an active Brownian particle,
we set F a = γ v0, with the friction coefficient γ = 3πηdH

of the surrounding fluid—η is the fluid viscosity and dH the
monomer hydrodynamic diameter—and the active velocity v0.
The orientation ei changes in a diffusive manner according to

ėi(t ) = η̂i(t ) × ei(t ), (5)

where η̂i is a Gaussian and Markovian stochastic processes
with zero mean and the second moments

〈η̂iα (t )η̂ jβ (t ′)〉 = 2DRδαβδi jδ(t − t ′). (6)

Here T denotes the temperature, kB the Boltzmann constant,
DR the rotational diffusion coefficient of a spherical colloid
of diameter dH , and α, β ∈ {x, y, z} refer to the axis of the
Cartesian reference frame.

Fluid-mediated interactions are incorporated implicitly
by the Rotne-Prager-Yamakawa (RPY) hydrodynamic tensor
[79,80] or explicitly by modeling the fluid via the MPC
approach [81,82].

B. Brownian dynamics with the RPY tensor

In Brownian dynamics simulations in the presence of hy-
drodynamic interactions, the overdamped equations of motion

ṙi(t ) =
Nm
∑

j=1

Hi j

[

Fa
j + F j + Ŵ j (t )

]

(7)

are considered. The forces F i = −∇ri
(Ul + Ub + ULJ ) follow

from the potentials (1)–(3), and Ŵi accounts for thermal
fluctuations. The random force Ŵi is modeled as a Gaussian
and Markovian stochastic processes with zero mean and the
second moments

〈

Ŵi(t )ŴT
j (t ′)

〉

= 2kBT H−1
i j δ(t − t ′), (8)

where ŴT
i denotes the transpose of Ŵi and H−1

i j the inverse of
Hi j . The hydrodynamic tensor, Hi j (ri j ), is given by

Hi j (ri j ) =
δi j

3πηdH

I + (1 − δi j )�(ri j ), (9)

where the first term on the right-hand side accounts for
local friction and the RPY tensor �(ri j ) for interparticle
interactions [78,86]. The RPY tensor ensures the positive
definiteness of the hydrodynamic tensor even at small dis-
tances. The translational equations of motion (7) are solved
via the Ermak-McCammon algorithm [87]. The procedure to
solve the equations of motion (5) for the orientation vector is
described in Ref. [20].

The active noise is quantified by the dimensionless Péclet
number [16,42]

Pe =
v0

lDR

, (10)

which compares the time for the reorientation of an ABP
monomer with that for its translation with velocity v0

over the monomer radius. The ratio between translational,
DT = kBT/3πηdH , and rotational diffusion, DR, of a single
monomer is denoted as

� =
DT

d2
H DR

. (11)

In the following, we will always consider � = 0.6. The
coefficient κl [Eq. (1)] for the bond strength is adjusted
according to the applied Péclet number, in order to avoid bond
stretching with increasing activity. By choosing κl l

2/kBT =
(10 + 2Pe)103, bond-length variations are smaller than 3% of
the equilibrium value l . Furthermore, the scaled bending force
coefficient κ̃b = κbl2/kBT [Eq. (2)] is related to the polymer
persistence length, lp = 1/(2p), by

pL = Nm

κ̃b[1 − coth (κ̃b)] + 1

κ̃b[1 + coth (κ̃b)] − 1
. (12)

The parameters of the truncated and shifted Lennard-Jones
potential are σ = 0.8l and ǫ = kBT .

C. Active polymers in MPC fluid

1. Polymer dynamics

Every monomer is exposed to an active forces Fa
i = v0ei(t )

(4), hence, a polymer experiences the total external force

Fa =
Nm
∑

i=1

γ v0ei(t ) =
Pe

dH�

Nm
∑

i=1

ei(t ), (13)

which drags along fluid and induces an overall fluid flow [88].
In a confined systems, walls prevent global flow and give rise
to fluid backflow. To prevent a net fluid flow in our system
with periodic boundary conditions, we modify the equations
of motion of the fluid (and the embedded polymer) in such
a way that the total momentum of the system (fluid plus
polymer) vanishes [88]. This implies the backflow force on
a monomer:

Fb
i = −

M

mN + MNm

Fa, (14)

where m is the mass of a fluid particle, N is the total number of
fluid particles, and M is the mass of a monomer. The dynamics
of a monomer is then described by the equation of motion

M r̈i = F i + Fa
i + Fb

i , (15)

with the force F i following from the potentials (1)-(3). Equa-
tion (15) is solved by applying the velocity-Verlet algorithm.

2. Fluid dynamics and fluid-polymer coupling

The dynamics of the MPC fluid proceeds in two steps—
streaming and collision [81,82]. In the steaming step, New-
ton’s equations of motion for fluid particles are solved in the
presence of the backflow force mFb

i /M over a time interval
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h, denote as collision time. Since ei(t ) changes very slowly
in the time interval h for small diffusion coefficients DR, we
apply the integration scheme

vk (t + h) = vk (t ) −
h

mN + MNm

Fa(t ), (16)

rk (t + h) = rk (t ) + hvk (t ) −
h2

2(mN + MNm)
Fa(t ), (17)

where rk (t ) and vk (t ) are the position and velocity of the
MPC particle k at time t , respectively. In the collision step,
particles are sorted into cubic cells of side length a of a
cubic, periodic systems of volume V = Na3/〈Nc〉 to define
the collision environment; 〈Nc〉 is the mean number of fluid
particles in a collision cell. Subsequently, the relative velocity
of each particle, with respect to the center-of-mass velocity
of all the particles within the corresponding collision cell, is
rotated by a constant angle α around an arbitrarily orientated
axis. The orientation of the rotation axis is chosen randomly
and independently for every cell and collision step. Hence, the
final velocity after a MPC step is

vk (t ) = vcm(t ) + R(α)[vk (t ) − vcm(t )], (18)

where R(α) is the rotation matrix, and

vcm(t ) =
∑Nc

k=1 mvk (t ) +
∑Nc

m

j=1 Mv j (t )

mNc + MNc
m

(19)

is the center-of-mass velocity of the Nc MPC particles and
the Nc

m monomers within the cell of particle k. Similarly to
Eq. (18), the velocities of the monomers are rotated, which
yields the fluid-monomer coupling by MPC collisions.

Partitioning of space in collision cells implies violation of
Galilean invariance, which is reinstalled by a random shift
of the collision lattice at every collision step [82,89]. In
order to maintain locally a constant temperature, the Maxwell-
Boltzmann scaling method is applied [90].

We measure energies in units of kBT , lengths in units of
the collision cell a = l , which is set equal to the equilibrium
bond length, and time in units of τ =

√

ma2/kBT . The MPC
particle mass is set to m = 1, the monomer mass to M = 10m,
the average number of particles in a collision cell to 〈Nc〉 =
10, and ǫ = kBT . A time step h = 0.01

√

ma2/kBT is used,
which corresponds to the viscosity η = 82.14

√

mkBT/a4 [91].
MPC is an ideal gas and, hence, its isothermal velocity of
sound is cT =

√
kBT/m, which is unity in the units of the sim-

ulation. To realize low Mach numbers, the transport velocity
of an active monomer has to be small compared to cT . All
simulations are performed in a cubic periodic box of linear
size LB = 100a.

In order to compare simulation results obtained via the
MPC approach with the Brownian dynamics simulations us-
ing the RPY tensor, several parameters have to be adjusted. In
particular, MPC simulations yield the hydrodynamic diameter
dH = 0.6a of a monomer [92,93], which yields, with DR =
100/τ , � = kBT/(3πηd3

H DR) ≈ 0.6.

FIG. 2. Polymer mean-square end-to-end distance as a function
of the Péclet number for semiflexible polymers with (a) Nm = 50
(L = 49l) and (b) Nm = 150 (L = 149l) monomers. Bullets are
results of phantom polymers and squares results of self-avoiding
polymers in (a) for pL = 5 × 101 (blue), 1.5 × 101 (green), 2.6 (red),
2.5 × 10−1 (cyan), and 2.5 × 10−2 (purple), and in (b) for pL =
1.5 × 102 (blue), 4.5 × 101 (green), 7.5 (red), 7.5 × 10−1 (cyan), and
7.5 × 10−2 (purple) (bottom to top). The dashed lines are guides
for the eye. The solid line (yellow) in (b) indicates a power-law
dependence in the respective regime. Hydrodynamics is taken into
account by the RPY hydrodynamic tensor.

III. COMPUTER SIMULATIONS: RESULTS

A. Conformational properties

The average shape of the polymers is characterized by
their mean-square end-to-end distance. Figure 2 displays
results for phantom and self-avoiding polymers of lengths
L = (Nm − 1)l = 49l, 149l and various persistence lengths
lp = 1/(2p). Evidently, flexible polymers, with pL ≫ 1, swell
monotonically with increasing Péclet number, whereas semi-
flexible polymers shrink at moderate Pe, and swell for large Pe
similarly as flexible polymers. In the asymptotic limit Pe →
∞, the value 〈r2

e〉 ≈ 2L2/5 is assumed. Excluded-volume
interactions change the behavior in so far as 〈r2

e〉/L2 starts
at a larger equilibrium value [cf. Fig. 2(a)]. For higher Pe
and swollen polymers, self-avoidance becomes irrelevant. A
qualitative similar behavior is obtained for longer polymers,
only quantitative differences appear [cf. Fig. 2(b)]. However,
longer polymers exhibit the universal, persistence-length in-
dependent increase 〈r2

e〉 ∼ Pe1/2 with increasing Pe above
a critical value. This regime appears for sufficiently long
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FIG. 3. Polymer mean-square end-to-end distance as a function
of the Péclet number of semiflexible polymers with Nm = 50 (L =
49l) monomers for pL = 5 × 101 (blue), 2.6 (red), and 2.5 × 10−2

(purple) (bottom to top). Solid lines are results applying the RPY
tensor, and bullets are results of hydride simulations using the MPC
approach.

polymers only and is not present for Nm = 50. In addition,
a nonuniversal cross-over regime exists for flexible polymers
in the range 5 � Pe � 30. These regimes and the observed
Pe dependence of the universal regime are explained by the
theoretical model in Sec. V.

The mean-square end-to-end distances obtained for poly-
mers embedded in a MPC solvent are compared with the
simulation results applying the RPY tensor in Fig. 3. Good
quantitative agreement of the polymer conformations for the
two simulation approaches is obtained, which confirms their
suitability for these simulation studies. For the hybrid MPC
approach, deviations from the RPY tensor simulations appear
for Pe � 102. This is attributed to limitations of the MPC
approach in terms of Mach and Reynolds numbers. The range
of Péclet number can be extended by applying a smaller
collision time step and/or by a higher mean value of MPC
particles in a collision cell.

The structural properties of the polymer in the presence
of hydrodynamic interactions strongly depends on the nature
of the active process. As discussed in Sec. II A, the active
force is considered here as an external force, mimicking an
active environment. Figure 4 shows that such an external
active force leads to a significantly stronger polymer swelling
than intrinsic self-propulsion (cf. Ref. [78]). Remarkably, in
contrast to the shrinkage of flexible active polymers with self-
propelled monomers over a range of Péclet numbers, flexible
externally driven active polymers monotonically swell. More-
over, the externally driven active polymers assume a larger
asymptotic mean-square end-to-end distance for Pe → ∞,
i.e., intrinsically active Brownian polymers in the presence
of hydrodynamic interactions are more compact. We will
provide a qualitative and quantitative explanation for these
observations in Sec. V.

B. Dynamical properties

The effect of activity on the polymer dynamics is illustrated
in Fig. 5, which displays the average monomer mean-square

FIG. 4. Polymer mean-square end-to-end distance as a function
of the Péclet number of semiflexible polymers of length Nm = 50
(L = 49l) and pL = 5 × 101 (blue), 1.5 × 101 (green), 2.6 (red),
2.5 × 10−1 (cyan), and 2.5 × 10−2 (purple) (bottom to top). Bullets
indicate results for the external active process and solid lines the
respective results for self-propelled monomers (ABPO + HI [78]).
Hydrodynamics is taken into account by the RPY hydrodynamic
tensor.

displacement

〈�r2(t )〉 =
1

Nm

Nm
∑

i=1

〈[ri(t ) − ri(0)]2〉. (20)

A passive polymer exhibits the well-known Zimm behavior
for t/τ̃1 ≪ 1, with the time dependence t2/3 of the MSD in
the center-of-mass reference frame, where τ̃1 is the longest
polymer relaxation time in the presence of HIs [86]. In the

FIG. 5. Mean-square displacement of flexible polymers with
Nm = 150 (pL = 150) monomers for the Péclet numbers Pe = 0
(blue), 101 (green), 102 (red), and 103 (cyan) (bottom to top). The
time is scaled by the factor γR = 2DR. The solid lines indicate
the overall monomer MSD and the dashed lines their MSD in the
polymer center-of-mass reference frame. The short lines (black) in-
dicating a power-law dependence of the data in the respective regime.
Hydrodynamics is taken into account by the RPY hydrodynamic
tensor.
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asymptotic limit t → ∞, the MSD depends linearly on time,
with an activity-dependent diffusion coefficient (cf. Sec. VI).
At large activities, the MSD exhibits a ballistic regime for
short times, similar to a single ABP [1], but with the reduced
(average) velocity v0/

√
Nm [cf. Eq. (56)]. Due to the indepen-

dence of the monomer rotational motion, the effective center-
of-mass ballistic velocity is determined by the fluctuations
of the monomer propulsion direction, which yields the factor
1/

√
Nm. In the center-of-mass reference frame, the monomer

MSD exhibits a subdiffusive power-law regime for Pe ≈ 10,
with an activity-determined effective exponent of 5/7 (cf.
Sec. VI for a derivation of the exponent). This regime extents
with polymer length, but becomes smaller with increasing Pe,
since the relaxation time τ̃1 decreases with increasing Péclet
number. Nevertheless, it is a consequence of hydrodynamic
interactions and activity (cf. Sec. VI for a more detailed
discussion).

IV. ANALYTICAL APPROACH

Insight into the qualitative differences between externally
driven active polymers and polymers composed of self-
propelled monomers is achieved by an analytical model,
where the polymers are described as continuous Gaussian
semiflexible chains. This model has previously been applied
to linear and ring active Brownian free-draining polymers
[42,44,46,51,94], as well as to linear self-propelled polymers
with hydrodynamic interactions [78].

A. Model and equations of motion

The polymers are considered as differentiable space curves
r(s, t ) of total length L, with contour coordinate s (−L/2 �

s � L/2), and their conformations change with time t . The
external active process is introduced by assigning an indepen-
dent velocity v(s, t ) to every site r(s, t ). The corresponding
Langevin equation is [84,95]

∂r(s, t )

∂t
=

∫ L/2

−L/2
ds′ H(r(s), r(s′))

[

3πηv(s′, t )

+ 2νkBT
∂2r(s′, t )

∂s′2 − ǫkBT
∂4r(s′, t )

∂s′4 + Ŵ(s′, t )

]

.

(21)

Free-end boundary conditions are applied as described in
Refs. [42,96]. Moreover, the constraint on the (average) con-
tour length

∫ L/2

−L/2
ds

〈

[

∂r(s, t )

∂s

]2
〉

= L (22)

is take into account, which is fundamental to achieve the
correct polymer properties [42,51,96]. The tensor

H(r(s), r(s′)) =
δ(s − s′)

3πη
I + �(r(s) − r(s′)) (23)

captures the hydrodynamic interactions, where the first term
on the right-hand side describes the local friction, and

�(�r) =
1

8πη|�r|

(

I +
�r ⊗ �r

|�r|2

)

(24)

is the Oseen tensor [78,86]. The terms in Eq. (21) with the
second and forth derivative capture chain flexibility, i.e., chain
entropy, and bending forces, respectively. The Lagrangian
multiplier ν accounts for the inextensibility of the polymer
(we will denote ν as stretching coefficient in the following)
and ǫ characterizes the bending stiffness [83,97]. For a poly-
mer in three dimensions, previous studies yield ǫ = 3/4p

[83,97].
For the velocity v(s, t ), we adopt a non-Markovian Gaus-

sian stochastic processes with zero mean and the correlation
function (colored noise)

〈v(s, t ) · v(s′, t ′)〉 = v
2
0 le−γR|t−t ′|δ(s − s′). (25)

This correlation function follows from Eq. (5) or, similarly,
by considering a monomer as an active Ornstein-Uhlenbeck
particle (AOUP) [1,16,26,41,42].

As outlined in Sec. II A, v(s, t ) is a consequence of an
external forcing, hence v(s, t ) appears inside the integral in
Eq. (21) and implies a Stokeslet flow.

B. Solution of the equations of motion

1. Hydrodynamic tensor: Preaveraging approximation

In order to find an approximate analytical solution of
the nonlinear and nonlocal equation of motion (21), we
apply the preaveraging approximation, where the hydrody-
namic tensor H(r(s) − r(s′)) is replaced by its stationary-state
average, i.e., H(r(s) − r(s′)) → 〈H(r(s) − r(s′))〉 = H(s, s′)
[84,86]. Hence, Eq. (21) turns into a linear equation (Ornstein-
Uhlenbeck process) with a Gaussian stationary-state distribu-
tion function for the distance �r(s, s′) = r(s) − r(s′) of the
form [16,84,86]

�(�r) =
[

3

2πa2(s, s′)

]3/2

exp

[

−
3�r2

2a2(s, s′)

]

, (26)

with a2(s, s′) = 〈[r(s) − r(s′)]2〉. Then the Oseen tensor (24)
becomes

�(s, s′) =
�(|s − s′| − dH )

3πη

√

3

2πa2
I = �(s, s′)I. (27)

The Heaviside step function �(x) introduces dH as a lower
cutoff for the hydrodynamic interactions, which can be iden-
tified with the thickness of the polymer.

The preaveraging approximation has very successfully
been applied to describe the dynamics of DNA [95] and semi-
flexible polymers [84]. Even quantitative agreement between
analytical theory and simulations of the full hydrodynamic
contribution of rather stiff polymers is achieved [98], as
well as with measurements on DNA [95]. This demonstrates
the suitability of preaveraging even for stretched polymers.
However, the preaveraging approximation overestimates the
hydrodynamics of rodlike objects [99].

2. Eigenfunction expansion

The linearized equation of motion is solved by the eigen-
function expansion

r(s, t ) =
∞

∑

n=0

χn(t )ϕn(s), (28)
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in terms of the eigenfunctions ϕn of the equation

ǫkBT
d4

ds4
ϕn(s) − 2νkBT

d2

ds2
ϕn(s) = ξnϕn(s), (29)

with the eigenvalues (n ∈ N0)

ξn = kBT
(

ǫζ 4
n + 2νζ 2

n

)

. (30)

The wave numbers ζn follow from the boundary conditions.
For a passive flexible polymer, pL ≫ 1, the wave numbers
are ζn = nπ/L and the eigenvalues ξn = 2νkBT π2n2/L2. The
stiffness dependence of ζn and ξn of passive semiflexible
polymers is discussed in Ref. [96] and that for free draining
active polymers in Ref. [44].

Insertion of the expansion (28) into Eq. (21) yields the
equation

dχn(t )

dt
=

∞
∑

m=0

Hnm[3πηvm(t ) + Ŵm(t ) − ξmχm(t )] (31)

for the mode amplitudes χn, where Hnm = (δnm +
3πη�nm)/3πη is the hydrodynamic tensor in mode
representation [84]. The second moments of the
stochastic-force amplitudes Ŵn(t ) are given by

〈Ŵnα (t ) Ŵmβ (t ′)〉 = 2kBT δαβδ(t − t ′) H−1
nm . (32)

The mode representation of the correlation function (25) of
the active velocity is [42]

〈vn(t ) · vm(t ′)〉 = v
2
0 le−γR|t−t ′|δnm. (33)

In Eq. (31) all modes couple in general and the set of
equations can only be solved numerically. To arrive at an
analytical solution, we neglect the off-diagonal terms of
the hydrodynamic-mode tensor Hnm, which yields [84,86,95]
(n > 0)

dχn(t )

dt
= −

1

τ̃n

χn + Hnn[Ŵn(t ) + 3πηvn(t )], (34)

with the relaxation times

τ̃n =
1

Hnnξn

=
τn

1 + 3πη�nn

, (35)

and τn = 3πη/ξn the relaxation times in the absence of hydro-
dynamic interactions. For passive flexible polymers [44,96]

τn =
3ηL2

2νkBT πn2
. (36)

The stationary-state solution of Eq. (34) for n > 0 is

χn(t ) = Hnn

∫ t

−∞
dt ′ e−(t−t ′ )/τ̃n [3πηvn(t ′) + Ŵn(t ′)], (37)

and for n = 0

χ0(t ) = χ0(0) +
∫ t

0
dt ′ H00[3πηv(0)(t

′) + Ŵ0(t ′)]. (38)

3. Correlation functions

The correlation functions of the mode amplitudes are given
by (n > 0)

〈χn(t ) · χm(t ′)〉 = δnm

[

kBT τn

πη
e−|t−t ′|/τ̃n +

v
2
0 lτ 2

n

1 − (γRτ̃n)2

× (e−γR|t−t ′| − γRτ̃ne−|t−t ′|/τ̃n )

]

, (39)

and for n = 0

〈χ0(t ) · χ0(t ′)〉 =
〈

χ2
0(0)

〉

+ 6kBT H00 t ′

+(3πηH00)2 v
2
0 l

γ 2
R

(2γRt ′ − 1 − eγR (t ′−t )

+ e−γRt + e−γRt ′
). (40)

Inserting the eigenfunction expansion (28) into the mean-
square distance a2(s, s′), we obtain

a2(s, s′) =
∞

∑

n=1

〈

χ2
n

〉

[ϕn(s) − ϕn(s′)]2, (41)

with the stationary-state correlation functions (39)

〈

χ2
n

〉

=
kBT τn

πη
+

v
2
0 lτ 2

n

1 + γRτ̃n

, (42)

which depend on the hydrodynamic interactions via τ̃n. The
active term with v

2
0 leads to enhanced fluctuations, which are

most significant at small mode numbers [51], and reflects the
violation of the fluctuation-dissipation relation [100]. Notably,
hydrodynamic interactions affect the dynamics as well as
the stationary-state conformational properties of an active
polymer, in contrast to passive systems, where conformational
properties are independent of HIs.

4. Mean square distance and hydrodynamic tensor:

Mode representation

The exact analytical expression of the mean-square dis-
tance a2(s, s′) (41) for the flexible active polymer can be
calculated by (numerically) performing the sum in Eq. (41),
where, in general, a2(s, s′) depends on s and s′. However, the
relaxation times τ̃n are required, which depend via a2(s, s′) on
the Oseen tensor. Hence, the double integral

�nn =

√

1

6π3η2

∫ L/2

−L/2

∫ L/2

−L/2
�(|s − s′| − dH )

×
ϕn(s)ϕn(s′)
√

a2(s, s′)
ds′ ds (43)

has to be evaluated together with Eq. (41) in an iterative and
self-consistent manner, which constitutes a major computa-
tional challenge.

For a passive semiflexible polymer, a2(s, s′) is only a
function of the difference |s − s′| [83,84]. In order to find a
more easily tractable expression for an active polymer, we
replace the difference of the eigenfunctions in Eq. (41) by
the expression valid for a passive polymer, namely, ϕn(s) −
ϕn(s′) = 2 sin[nπ (s − s′)/2L] for n odd and ϕn(s) − ϕn(s′) =
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FIG. 6. Ratio �a2 = |a2(s, s′) − a2(s − s′)|/a2(s, s′) of the dif-
ference between the mean-square distance between two points along
the polymer contour, Eq. (41), and its approximation, Eq. (44), and
Eq. (41) for pL = 103 and the Péclet numbers Pe = 10−2 (blue,
bottom), 1 (orange), 50 (yellow), and 103 (purple) (top to bottom
at 0.2). Inset: Mean-square distance between two points along the
polymer contour. The solid lines are obtained from Eq. (41), where
s′ = −L/2, and the dashed lines from the approximation (44). The
long-dashed line for Pe = 103 is a power-law fit, which yields
a2(s) = 0.11s1.27. Colors correspond to the same Péclet numbers as
in the main plot and increase from bottom to top.

0 for n even. As a result, we obtain the expression

a2(s) =
8

L

∑

n,odd

(

kBT τn

πη
+

v
2
0 lτ 2

n

1 + γRτ̃n

)

sin2
(nπ

2L
s
)

. (44)

This leads to the more easily tractable expression for the
Oseen tensor (43) with a single integral

�nn =
√

2

3π3

1

ηL

∫ L

dH

L − s
√

a2(s)
cos

(nπ

L
s
)

ds (45)

by applying a standard approximation for the double inte-
gral, which is dominated by contributions with s = s′ (cf.
Ref. [86]). This expression is identical with that of a passive
polymer aside from the distance a2(s − s′), which depends
here on activity via the relaxation times [84]. As shown in
Fig. 6, the approximations employed in deriving Eq. (44)
capture the dependence of a2(s, s′) on the contour coordinate
well, the better the larger the Péclet number.

In the following, when not indicated otherwise, the approx-
imate expressions (44) and (45) are used for the calculation of
the Oseen tensor. Moreover, we use � = 0.6 [cf. Eq. (11) for
the definition of �].

5. Stretching coefficient and relaxation times

For flexible polymers with L/l = pL ≫ 1, the constraint
(22) for the stretching coefficient µ = 2ν/(3p) turns into

∞
∑

n=1

[

kBT τn

πη
+

v
2
0 lτ 2

n

1 + γRτ̃n

]

ζ 2
n = L, (46)

FIG. 7. Normalized stretching coefficient µ = 2ν/(3p), solution
of Eq. (46), as function of the Péclet number Pe for flexible polymers
with pL = 50 (dotted), 1.5 × 102 (dashed), and 103 (solid blue,
bottom). The top solid line (green) shows the result of an active
polymer in the absence of HIs for pL = 103. The short lines (black)
indicate the power-law dependence in the respective regimes.

with the eigenfunction expansion (28) and the relaxation times
[Eq. (35)]

τ̃n =
τR

µn2(1 + 3πη�nn)
, (47)

where τR = ηL2/(πkBT p) is the Rouse relaxation time
[86,96]. Due to nonlinear terms, specifically in �nn, the
related equations and expressions have to be solved and
evaluated numerically.

The scaled stretching coefficient, µ = 2ν/(3p), is pre-
sented in Fig. 7 as a function of the Péclet number. For short
polymers or large stiffness (pL = 50), µ increases linearly
with increasing Pe in the limit 1 ≪ pL ≪ Pe [cf. Eq. (A2)]. In
case of more flexible polymers (pL � 103), µ ∼ Pe4/3 in the
range 1 ≪ Pe ≪ pL [cf. Eq. (A3)]. The overall dependence
of µ on Pe resembles that of a polymer in the absence of
hydrodynamic interactions [42]. Yet hydrodynamics affects µ,
particularly for Péclet numbers in the vicinity of Pe ≈ 10. In
the Appendix, a more detailed discussion of the asymptotic
dependencies is provided.

Figure 8(a) depicts the dependence of the preaveraged
Oseen tensor on the mode number for flexible polymers. For
a passive polymer, we obtained the dependence �nn ∼ n−1/2

of the Zimm model [86] over a range of mode numbers,
which depends on pL. With increasing Péclet number, both
the values of �nn and the magnitude of the slope decrease
substantially. As a consequence, at high Péclet numbers, �nn

does not contribute to the mode-number dependence of the
relaxation time anymore, as is reflected in Fig. 8(b). Zimm-
type relaxation times τ̃n ∼ n−3/2 are obtained for the passive
polymer [Fig. 8(b)] [84]. With increasing Péclet number, the
mode-number dependence changes to τ̃n ∼ n−7/4 for Pe =
103, a dependence very close to that of a free-draining,
nonhydrodynamic Rouse polymer [86]. This emphasizes the
diminishing effect of hydrodynamic interactions with increas-
ing activity.
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FIG. 8. (a) Mode-number dependence of the Oseen tensor �nn for polymers of length pL = 103 (squares) and pL = 105 (circles) and the
Péclet numbers Pe = 10−2 (blue), 1 (orange), 50 (yellow), and 103 (purple) (top to bottom). (b) Mode-number dependence of the relaxation
times τ̃n for flexible polymers of length pL = 105 and the Péclet numbers Pe = 0 (blue), 1 (orange), 50 (yellow), and 103 (purple) (top to
bottom). (c) Longest polymer relaxation time τ̃1, Eq. (47), normalized by the corresponding passive value τ̃ 0

1 as function of the Péclet number
Pe for flexible polymers with pL = 50 (dotted), 1.5 × 102 (dashed), and 103 (solid blue, top). The bottom solid curve (green) corresponds
to an active polymer in the absence of HIs for pL = 103, where τ1 ∼ Pe−4/3. The short lines (black) indicate power-law dependencies in the
respective regimes.

The activity dependence of the longest polymer relaxation
time is displayed in Fig 8(c). The decline of τ̃1 with increasing
Pe is determined by the stretching coefficient µ and the
implicit dependence of �11 on µ(Pe). The shift to larger Pe
of the curves in the presence of HIs reflects its influence
on the relaxation times, specifically the influence on �11.
The latter is also responsible for values τ̃1/τ̃

0
1 > 1 (Pe ≈ 1),

because �11 decreases with increasing Pe [Fig. 8(a)]. As
discussed in the Appendix, µ is essentially independent of
hydrodynamic interactions for pL ≪ Pe, hence the decline
of τ̃1 with increasing Pe (Pe ≫ 1) for pL = 50 is solely
determined by µ and τ̃1 ∼ 1/Pe. Similarly, the asymptotic
behavior for pL = 103 is determined by µ, with τ̃1 ∼ 1/Pe4/3,
the dependence of a polymer in the absence of hydrodynamic
interactions. However, for very flexible polymers, pL � 103,
the HIs give rise to an intermediate regime, 10 < Pe < 103,
where τ̃1 ∼ Pe−7/6. The difference to a decay with τ̃1 ∼ Pe−1

seems subtle, but is essential and strongly affects the confor-
mational and dynamical properties of a polymer, as will be
discussed in Secs. V and VI.

V. CONFORMATIONAL PROPERTIES

The conformational properties of the polymers are char-
acterized by their mean-square end-to-end distance 〈r2

e〉 =
〈(r(L/2) − r(−L/2))2〉, which is

〈

r2
e

〉

=
8

L

∑

n, odd

(

kBT τn

πη
+

v
2
0 lτ 2

n

1 + γRτ̃n

)

(48)

in terms of the mode amplitudes of Eq. (42). Numerical
results for 〈r2

e〉 are displayed in Fig. 9. As in simulations (cf.
Fig. 2), polymers swell stronger with increasing activity than
free draining active polymers, and their size saturates at L2/2
for Pe → ∞, the value of the free-draining case. Similarly
to free-draining polymers or polymers with self-propelled
monomers, the thermal contribution, proportional to kBT , de-
creases and the active term, proportional to v

2
0 , increases with

increasing Pe. However, the swelling behavior is distinctly
different compared to those two cases, which is reflected by
the respective dependence on the relaxation times τn and τ̃n.

Comparing the relaxation-time dependence of the active term
(with v0) of a free-draining polymer, τ 2

n /(1 + γRτn) [42], of
a polymer with self-propelled monomers, τ̃ 2

n /(1 + γRτ̃n) [78],
and that of Eq. (48), we find

τ 2
n

1 + γRτ̃n

�
τ 2

n

1 + γRτn

�
τ̃ 2

n

1 + γRτ̃n

, (49)

because τ̃n � τn. Hence, the externally driven polymer swells
strongest with increasing Péclet number, and swelling sets in
at smaller Pe. This is reflected in the shift of the dashed-dotted
lines in Fig. 9 to smaller Pe with increasing pL, whereas
respective curves shift to larger Pe in case of polymers with
self-propelled monomers, associated with polymer shrinkage
[78]. This reveals the distinct influence of the character of the

FIG. 9. Polymer mean-square end-to-end distance 〈r2
e〉 scaled by

the equilibrium value L/p in the presence of HIs as a function
of the Péclet number Pe for flexible polymers of length pL = 50
(blue), pL = 1.5 × 102 (orange), pL = 103 (yellow), and pL = 104

(purple) (pL increases from top to bottom). The green curve (bottom)
corresponds to the free-draining flexible polymer with pL = 50. The
dashed curves represent the passive contribution with the relaxation
times τn and the dashed-dotted curves the active part with v

2
0 in

Eq. (48). The short line (black) indicates a power-law dependence
in the respective regime.
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FIG. 10. Comparison of the dependence of the polymer mean-
square end-to-end-distance on the Péclet number obtained from
analytical theory (lines) and BD simulations (bullets) for polymers
with pL = 50 (blue, bottom) and pL = 1.5 × 102 (orange, top).

active noise on the polymer conformations in the presence of
hydrodynamic interactions.

The asymptotic limit for Pe → ∞ can be obtained analyti-
cally. The term γRτ̃n ≪ 1 for Pe → ∞ (cf. the Appendix) and,
thus, can be neglected in Eq. (48). Evaluation of the sum over
modes with the relaxation times (36) and insertion of Eq. (A2)
then gives 〈r2

e〉 = L2/2. This result is in close agreement with
simulations, which yield a somewhat smaller value, as shown
in Fig. 10. Moreover, the asymptotic limit is identical with
that of a free-draining polymer [42], in contrast to a polymer
of self-propelled monomers [78].

The enhanced swelling of the externally driven flexible
polymer can be understood as follows. In the regime of strong
polymer swelling, e.g., 0.1 < Pe < 100 for pL = 50 in Fig. 9,
γRτ̃1 ≫ 1 and the active velocity-dependent term in Eq. (42)
can be approximate by

v
2
0 lτn

γR

(1 + 3πη�nn), (50)

which is by the contribution 3πη�nn larger than the term
in the absence of HIs. Formally, we can introduce an effec-
tive larger velocity v0

√
1 + 3πη�nn, which corresponds to

an effectively higher Péclet number and, hence, a stronger
polymer swelling. According to Eq. (37), both the active
velocity vn(t ) and the stochastic force Ŵn(t ) are enhanced
by the hydrodynamic tensor Hnn. However, the hydrodynamic
effect disappears in the thermal contribution of the correlation
function (42), because of the fluctuation-dissipation relation
Eq. (32). Hence, the strong hydrodynamic effect on polymer
conformations is a consequence of the independence of the ro-
tational dynamics from the translational hydrodynamic tensor
[cf. Eq. (33)].

Simulations (Fig. 2) and analytical calculations (Fig. 9)
predict the swelling behavior 〈r2

e〉 ∼ Pe1/2 over a range of
Péclet numbers, where the range increases with increasing pL.
This dependence on Pe is markedly different from that of free-
draining polymers and those with self-propelled monomers;
in the latter case the exponent is larger than unity [78]. This

difference rests upon a particular dependence of the dynamics
on hydrodynamic interactions, reflected in the Pe dependence
of the relaxation time τ̃1 [Fig. 8(c)], as can be shown analyt-
ically. First, the mode-number dependence of the relaxation
times τ̃n is well described by a power law, specifically for
pL = 103, τ̃n ≈ τ̃1/n2 [Fig. 8(b)]. Second, in the relevant Pe
regime γRτ̃n ≫ 1, hence, Eq. (48) yields

〈

r2
e

〉

∼
Pe2

µ2τ̃1
∼

√
Pe, (51)

with µ ∼ Pe4/3 [Eq. (A3)] and τ̃1 ∼ Pe−7/6 [Fig. 8(c)], rela-
tions appropriate for pL = 103. It is the Pe dependence of the
relaxation time τ̃1 which is decisive for the relation (51). In
the absence of HIs, τ ∼ 1/µ ∼ Pe−4/3 and 〈r2

e〉 ∼ Pe2/3 [42],
which is a substantially stronger Pe dependence. The seem-
ingly rather small difference between the exponent −4/3 =
−8/6, valid in the absence of HIs, and −7/6, valid with
HIs, of the relaxation time is decisive and leads to a weaker
swelling of the externally driven polymer with increasing Pe.

The theoretical approach very well reproduces the simula-
tion data, as shown in Fig. 10. The analytical theory somewhat
overestimates the asymptotic value as a consequence of the
mean-field-type constraint for the bond length [Eq. (22)].

We like to emphasize that the swelling of active polymers
is determined by their inextensibility, as is evident from the re-
sults of this section. Only by taking this polymer feature suit-
ably into account, e.g., via the constraint (22), the qualitative
correct behavior is obtained theoretically [42,44,46,51,78].
Approaches neglecting such a condition predict swelling,
which qualitatively and quantitatively disagrees with simula-
tion results.

VI. DYNAMICAL PROPERTIES

The polymer dynamics is analyzed in terms of the
monomer mean-square displacement (MSD) averaged over
the polymer contour

〈

�r2(t )
〉

=
1

L

∫

ds
〈

(r(s, t ) − r(s, 0))2
〉

=
〈

�r2
cm(t )

〉

+
〈

�r2
0(t )

〉

+
〈

�r2
a(t )

〉

, (52)

with the center-of-mass mean-square displacement

〈

�r2
cm(t )

〉

= H00
6kBT

L
t

+ (1 + 3πη�00)
2v

2
0 l

γ 2
R L

(γRt − 1 + e−γRt ), (53)

H00 = (1 + 3πη�00)/(3πη), the activity-modified
equilibrium-like internal dynamics contribution

〈

�r2
0(t )

〉

=
1

L

∞
∑

n=1

2kBT τn

πη
(1 − e−t/τ̃n ), (54)

and the active contribution

〈

�r2
a(t )

〉

=
1

L

∞
∑

n=1

2v
2
0 lτ 2

n

1 + γRτ̃n

(

1 −
e−γRt − γRτ̃ne−t/τ̃n

1 − γRτ̃n

)

. (55)

The passive parts of 〈�r2(t )〉—in 〈�r2
cm(t )〉 and

〈�r2
0(t )〉—are, aside from the µ dependence of the relaxation
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FIG. 11. (a) Mean-square displacement of flexible polymers for
pL = 105 and the Péclet numbers Pe = 0 (blue), 1 (orange), 50
(yellow), and 103 (purple) (bottom to top). The Zimm relaxation
time τZ = η(L/p)3/2/(

√
3πkBT ) is the longest relaxation time of

the passive polymer. (b) MSD for the Péclet number Pe = 115 and
pL = 50 (blue), 1.5 × 102 (orange), 103 (yellow), 104 (purple), and
105 (green) (bottom to top). The dashed lines correspond to the MSD
in the polymer center-of-mass reference frame, and the solid lines are
the overall MSD. The short lines (black) indicate power laws in the
respective regimes.

times, identical with the dynamics of the Zimm model, or that
of a semiflexible polymer in the presence of HIs [78,86,95].
Numerical results for Eq. (52) are presented in Fig. 11.

The center-of-mass MSD exhibits the same time-
dependent terms as an active polymer without HIs and a poly-
mer with self-propelled monomers. For t → ∞, 〈�r2

cm(t )〉
dominates the total MSD, increasing linearly in time with the
diffusion coefficient

D =
1 + 3πη�00

L

(

kBT

3πη
+

v
2
0 l

3γR

)

, (56)

which is the diffusion coefficient in the absence of HIs, the
term in brackets, modified by hydrodynamics, �00; the latter
depends on polymer length and Péclet number. Figure 8(a)
indicates a substantial increase of �00 with polymer length,
a decrease with increasing Pe, and �00 seems to approach a
Pe-independent value for Pe ≫ 1.

The site-averaged MSD in the center-of-mass reference
frame, 〈�r2

0(t )〉 + 〈�r2
a(t )〉, exhibits three distinct regimes:

FIG. 12. Comparison of the mean-square displacement obtained
in simulations (broad solid lines; Fig. 5) with analytical theory [thin
solid and dashed lines; Eq. (52)] for the Péclet numbers Pe = 0
(blue), 101 (green), 102 (red), and 103 (cyan) (bottom to top). The
monomer number is Nm = 150 and pL = L/l = 150, respectively.
The dashed lines and the respective broad solid lines correspond to
the MSD in the polymer center-of-mass reference frame.

(i) t → 0—The MSD is dominated by Eq. (54), and all
modes contribute. With τn = τR/(µn2) for a flexible polymer,
conversion of the sum to an integral yields

〈

�r2
0(t )

〉

=
2L

π2 pµ

(

t

τ̃1

)2/3 ∫ ∞

0
dx

1 − e−x3/2

x2
. (57)

This is the same relation as obtained for a passive system,
except that µ and τ̃1 depend on activity, and a polymer with
self-propelled monomers [78].

(ii) t/τ̃1 and γRt ≪ 1—Taylor expansion of the exponen-
tial functions in Eq. (55) yields

〈

�r2
a(t )

〉

=
v

2
0 lγR

L

∞
∑

n=1

τ 2
n

τ̃n(1 + γRτ̃n)
t2, (58)

consistent with the observed ballistic regime in Fig. 11. This
regime and its dependence on activity and polymer properties
is in qualitative agreement with the simulation results of Fig. 5
(cf. Fig. 12).

(iii) 1/γR ≪ t ≪ τ̃1—With γRτ̃1 ≫ 1, the MSD is given
by

〈

�r2
a(t )

〉

=
2v

2
0 l

γRL

∞
∑

n=1

τ 2
n

τ̃n

(

1 − e−t/τ̃n
)

. (59)

The relaxation times τ̃n are well described by the power law
τ̃n = τ̃1/nγ (cf. Fig. 8). Inserting this relation and replacing
the sum by an integral, Eq. (59) yields

〈

�r2
a(t )

〉

=
2v

2
0 lτ 2

R

µ2γRL

(

t

τ̃1

)γ ′
∫ ∞

0
dx

1 − e−xγ

x4−γ
, (60)

with γ ′ = 3/γ − 1. For Pe > 50 and pL = 103, the power-
law exponent is close to γ = 7/4, hence,

〈

�r2
a(t )

〉

∼ t5/7. (61)
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This time dependence is in close agreement with the numer-
ical result displayed in Fig. 11. By the interplay between
activity and hydrodynamic interactions, a new power-law
regime emerges for the intramolecular MSD. The seemingly
small difference between the exponent of the relaxation times
γ = 7/4 and the value γ = 2 for Rouse polymers, implies a
significantly different power law of the MSD, namely an expo-
nent γ ′ = 5/7 for the current active polymers versus γ ′ = 1/2
for Rouse polymers [44]. Moreover, the type of active force
matters—calculations for self-propelled monomers yield the
exponent γ ′ = 2/5 [78], which is even smaller than the value
for free-draining polymers. This emphasizes the strong and
dominating influence of hydrodynamic interactions on the
dynamics of active polymers.

The overall monomer MSD (52) exhibits even a dif-
ferent power-law regime 〈�r2(t )〉 ∼ t3/4 for pL � 103, by
an additional contribution of the center-of-mass MSD. Evi-
dently, a splitting of the center-of-mass-site MSD, 〈�r2

0(t )〉 +
〈�r2

a(t )〉, from the overall MSD is not possible, even for very
long polymers.

Figure 12 presents a comparison of the mean-square dis-
placements of the discrete polymers of Fig. 5 with analyt-
ically results. The results agree very well considering the
limited statistical accuracy in the simulation results, the ap-
proximation in the analytical evaluation of the hydrodynamic
tensor, and the overestimation of the extension of active
polymers for Pe ≫ 1 (cf. Fig. 10) as a consequence of the
mean-field-type constraint for the bond length. The latter is
reflected by the analytical results exceeding the asymptotic
values of the MSD in the polymer center-of-mass reference
frame for t → ∞, which is theoretically twice the radius of
gyration, but somewhat smaller in simulations.

VII. SUMMARY AND CONCLUSIONS

We have studied the conformational and dynamical prop-
erties of semiflexible active polymers in the presence of hy-
drodynamic interactions by simulations and analytical theory.
In the simulations, we consider the overdamped dynamics of
a bead-spring polymer, including hydrodynamic interactions
via the Rotne-Prager-Yamakawa hydrodynamic tensor. More-
over, we present an implementation of the active polymer in
the multiparticle-collision-dynamics approach. Comparison
of the polymer conformational properties at various Péclet
numbers and polymer stiffness yields quantitative agreement
between simulations employing the hydrodynamic tensor and
the MPC method, respectively. The MPC approach opens
possibilities to study active polymers in situations, where a
tensor description is extremely difficult and demanding, as
for polymers confined in channels. In the analytical treat-
ment, the Gaussian semiflexible polymer model is adopted,
taking into account the polymer inextensibility in a mean-
field manner by a constraint for the average contour length.
Here hydrodynamic interactions are taken into account by the
preaveraged Oseen tensor. In any case, activity is modeled as a
Gaussian colored-noise process with an exponential temporal
correlation. This activity is assumed to be imposed externally
onto the monomers by the embedding active bath. As a
consequence, the active forces give rise to monomer Stokeslet
flow fields, in contrast to self-propelled monomers which are

force free [78]. Further Stokeslets appear by intramolecular
forces due to bond, bending, volume exclusion, and thermal
forces.

Our studies reveal a strong effect of hydrodynamics on
both conformations and dynamics. As a consequence of the
activity-induced Stokeslets, polymers swell monotonically
and stronger with increasing Péclet number than active poly-
mers in the absence of hydrodynamic interactions [42], and
than polymers composed of self-propelled monomers [78]. In
the asymptotic limit of an infinite Péclet number, the same
finite mean-square end-to-end distance is assumed as for free-
draining active polymers, larger than that of polymers with
self-propelled monomers. As we have shown by analytical
calculations, in this limit hydrodynamic interactions become
irrelevant. Moreover, we find a broad range of Péclet numbers
and stiffnesses, where the mean-square end-to-end distance
increases as Pe1/2. This increase is slower compared to that of
the other two types of active polymers. Here, the dependence
of the longest relaxation time on the Péclet number plays a de-
cisive role, with τ̃1 being strongly affected by hydrodynamic
interactions.

Qualitatively, we explain the enhanced polymer swelling
with increasing Pe by a hydrodynamically accelerated active
velocity. In turn, this implies an apparent higher Péclet num-
ber, followed by stronger swelling. The flow field induced by
translating parts of the polymers advects monomers or sites
and leads to an accelerated dynamics. Similarly, an enhanced
thermal force appears in the solution of the normal-mode
amplitudes, χn, however, this effect is compensated by the
fluctuation-dissipation relation. This implies that the thermal
parts of conformational quantities at equilibrium are explic-
itly independent of hydrodynamic interactions. This does not
apply to the active velocity, because its temporal correlation
function is independent of hydrodynamics.

The polymer dynamics is determined by two relaxation
processes, the orientational relaxation of an active site or
monomer, and the polymer internal relaxation modes. This
is reflected in distinct time regimes in the polymer mean-
square displacement. At short times t/τ̃1 ≪ 1 and γRt ≪
1, activity implies to a ballistic regime, with an enhanced
dynamics compared to a passive polymer. For 1/γR ≪ t ≪
τ̃1, the MSD is dominated by the internal dynamics, and
a polymer-characteristic subdiffusive regime appears. Again,
activity and hydrodynamics play a decisive role, leading to a
power-law dependence of the site MSD in the polymer center-
of-mass reference frame with an exponent γ ′ = 5/7, larger
than that of a free-draining active polymer, and a polymer
with self-propelled monomers and HIs. In the asymptotic limit
of long times, the free-draining active diffusion coefficient is
amplified by hydrodynamics, in the same way as the thermal
diffusion coefficient [cf. Eq. (56)].

The analytical calculations and the good agreement with
simulations indicate that a suitable account of the fixed
polymer contour length is essential for a qualitative correct
description of the active-polymer conformations. In the ana-
lytical calculations, we have been taking this constraint into
account in a mean-field manner by the average mean-square
contour length [Eq. (22)]. This leads to a strong activity
dependence of the relaxation times and consequently the
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observed increase of the mean-square end-to-end distance,
〈r2

e〉 ∼ Pe1/2, and a saturation of 〈r2
e〉 for Pe → ∞. Omis-

sion of this polymer property, as common in the theoretical
description of active polymers by the Rouse or Zimm model,
leads to artifacts especially at moderate and large activities.

In conclusion, in the presence of hydrodynamics, the prop-
erties of active polymers consisting either of self-propelled
monomers or experiencing an external driving force with the
same temporal correlation function are substantially different.
In the first case, even flexible polymers shrink at moderate
Péclet numbers and swell for larger Pe; in the second case,
polymers swell monotonically for all Pe, and the polymer size
is (significantly) larger for all Péclet numbers. The difference
in the coupling to the fluid leads to a reduced or enhanced
active velocity and is reflected in the polymer conformations
and dynamics.

Experimentally, an externally driven polymer can in prin-
ciple be realized by forcing a chain of colloidal particles by
optical tweezers [101]. Optical forces are very well suited to
manipulate objects as small as 5 nm and as large as hundreds
of micrometers [101]. Combined with computer-generated
holograms, many particles can be manipulated with a single
laser beam at the same time. The example of an optical pump
of Ref. [102] illustrates the possibility to manipulate several
colloidal particle simultaneously. Such a setup is therefore
well suited to actuated a colloidal polymer [48]. The persistent
colloid motion can be controlled by the tweezer light field
which translates them in random directions with an exponen-
tial temporal orientation correlation function.
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APPENDIX: ASYMPTOTIC

STRETCHING COEFFICIENT

The active contribution in the Eq. (46) can by written as
∞

∑

i=1

v
2
0 lτ 2

n

1 + γRτ̃n

ζ 2
n =

Pe2 pL2

9µ2�2π2

×
∞

∑

i=1

[

n2 +
2(pL)2

3µ�π2(1 + 3πη�nn)

]−1

,

(A1)

when we set dH ≡ l . The stretching coefficient, µ, increases
with increasing Pe. Hence, for (pL)2 ≪ µ, the second term in
the brackets can be neglected. Then we obtain from Eq. (46)

µ =
√

pL

6

Pe

3�
. (A2)

In the opposite limit, pL ≫ Pe, the sum over n is dominated
by the second term in the bracket for small n, and the mode-
number dependence is determined by the preaveraged Oseen
tensor. With increasing Péclet number, higher modes become
important, at the same time �nn becomes less relevant. Ne-
glecting the hydrodynamic contribution, or at least its mode-
number dependence, the sum over modes can be evaluated,
and Eq. (46) yields [42]

µ ∼ Pe4/3. (A3)
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