000877306 001__ 877306
000877306 005__ 20210816204452.0
000877306 0247_ $$2doi$$a10.1002/eng2.12177
000877306 0247_ $$2Handle$$a2128/25148
000877306 0247_ $$2altmetric$$aaltmetric:82935244
000877306 0247_ $$2WOS$$aWOS:000674440200009
000877306 037__ $$aFZJ-2020-02122
000877306 041__ $$aEnglish
000877306 082__ $$a620
000877306 1001_ $$0P:(DE-HGF)0$$aMorrison, Helen E.$$b0
000877306 245__ $$aHybrid datasets: Incorporating experimental data into Lattice-Boltzmann simulations
000877306 260__ $$aHoboken, NJ$$bWiley$$c2020
000877306 3367_ $$2DRIVER$$aarticle
000877306 3367_ $$2DataCite$$aOutput Types/Journal article
000877306 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1593180088_7882
000877306 3367_ $$2BibTeX$$aARTICLE
000877306 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877306 3367_ $$00$$2EndNote$$aJournal Article
000877306 520__ $$aA novel method, which combines both fluid-mechanical experimental and numerical data from magnetic resonance velocimetry and Lattice-Boltzmann (LB) simulations is presented. The LB method offers a unique and simple way of integrating the experimental data into the simulation by means of its equilibrium term. The simulation is guided by the experimental data, while at the same time potential outliers or noisy data are physically smoothed. In addition, the simulation allows to increase the resolution and to obtain further physical quantities, which are not measurable in the experiment. For a benchmark case, temporally averaged velocity data is included into the simulation. The proposed model creates a hybrid dataset, which satisfies the Reynolds-averaged Navier-Stokes equations, including the correctly deduced contribution from the Reynolds stress tensor.
000877306 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000877306 7001_ $$0P:(DE-Juel1)165948$$aLintermann, Andreas$$b1$$ufzj
000877306 7001_ $$0P:(DE-HGF)0$$aGrundmann, Sven$$b2$$eCorresponding author
000877306 773__ $$0PERI:(DE-600)2947569-7$$a10.1002/eng2.12177$$n6$$pe12177$$tEngineering reports$$v2$$x2577-8196$$y2020
000877306 8564_ $$uhttps://juser.fz-juelich.de/record/877306/files/eng2.12177.pdf$$yOpenAccess
000877306 8564_ $$uhttps://juser.fz-juelich.de/record/877306/files/eng2.12177.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877306 909CO $$ooai:juser.fz-juelich.de:877306$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877306 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165948$$aForschungszentrum Jülich$$b1$$kFZJ
000877306 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000877306 9141_ $$y2020
000877306 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877306 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-15
000877306 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-15
000877306 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877306 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-15
000877306 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-15
000877306 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-15
000877306 920__ $$lyes
000877306 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000877306 980__ $$ajournal
000877306 980__ $$aVDB
000877306 980__ $$aUNRESTRICTED
000877306 980__ $$aI:(DE-Juel1)JSC-20090406
000877306 9801_ $$aFullTexts