001     877306
005     20210816204452.0
024 7 _ |a 10.1002/eng2.12177
|2 doi
024 7 _ |a 2128/25148
|2 Handle
024 7 _ |a altmetric:82935244
|2 altmetric
024 7 _ |a WOS:000674440200009
|2 WOS
037 _ _ |a FZJ-2020-02122
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Morrison, Helen E.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hybrid datasets: Incorporating experimental data into Lattice-Boltzmann simulations
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593180088_7882
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A novel method, which combines both fluid-mechanical experimental and numerical data from magnetic resonance velocimetry and Lattice-Boltzmann (LB) simulations is presented. The LB method offers a unique and simple way of integrating the experimental data into the simulation by means of its equilibrium term. The simulation is guided by the experimental data, while at the same time potential outliers or noisy data are physically smoothed. In addition, the simulation allows to increase the resolution and to obtain further physical quantities, which are not measurable in the experiment. For a benchmark case, temporally averaged velocity data is included into the simulation. The proposed model creates a hybrid dataset, which satisfies the Reynolds-averaged Navier-Stokes equations, including the correctly deduced contribution from the Reynolds stress tensor.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Lintermann, Andreas
|0 P:(DE-Juel1)165948
|b 1
|u fzj
700 1 _ |a Grundmann, Sven
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
773 _ _ |a 10.1002/eng2.12177
|0 PERI:(DE-600)2947569-7
|n 6
|p e12177
|t Engineering reports
|v 2
|y 2020
|x 2577-8196
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877306/files/eng2.12177.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877306/files/eng2.12177.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877306
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165948
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-15
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-15
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-15
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-15
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-15
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21