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Summary
A novel method, which combines both fluid-mechanical experimental and
numerical data from magnetic resonance velocimetry and Lattice-Boltzmann
(LB) simulations is presented. The LB method offers a unique and simple way
of integrating the experimental data into the simulation by means of its equi-
librium term. The simulation is guided by the experimental data, while at the
same time potential outliers or noisy data are physically smoothed. In addition,
the simulation allows to increase the resolution and to obtain further physi-
cal quantities, which are not measurable in the experiment. For a benchmark
case, temporally averaged velocity data is included into the simulation. The pro-
posed model creates a hybrid dataset, which satisfies the Reynolds-averaged
Navier-Stokes equations, including the correctly deduced contribution from the
Reynolds stress tensor.

K E Y W O R D S

Lattice-Boltzmann method, hybrid simulation, magnetic resonance velocimetry,
Reynolds-averaged Navier-Stokes equations

1 INTRODUCTION

In fluid dynamics, experiments, and simulations are frequently conducted independently from one another. While
experiments aim at analyzing an existing flow field in as much detail as possible and with the highest realizable accu-
racy, simulations aim at reproducing the corresponding flow field. Experiments are frequently used to validate numerical
results. In turn, simulations may offer higher spatial and temporal resolutions and ideally more details on the evolv-
ing flow. However, such simulations require accurate boundary conditions and rely on turbulence modeling whenever
a direct numerical simulation (DNS) is not feasible. In case the simulation approach does not fully satisfy the physi-
cal constraints, the simulation results may considerably differ from reality and consequently also from the experimental
data.

Several approaches, which combine experimental data with (hydrodynamic) models, have been introduced in the
literature. They enable a better predictability of the models on the one hand and a physical filtering of experimental
data on the other hand. These approaches are most commonly summarized under the term data assimilation.1 They
are especially popular in meteorology and geophysics, where they are used to obtain precise forecast models.2,3 Data
assimilation has also been used in the context of the Navier-Stokes equations, where experimental data is often combined
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with the underlying equations in order to solve optimization problems.4 Furthermore, Suzuki et al.5 introduced the term
hybrid simulation. In their method, time-resolved particle tracking velocimetry data are directly incorporated into DNS
simulations. This can generally be done via several different approaches, which vary mainly by the complexity of the
feedback mechanism.6 Hybrid datasets can furthermore be obtained from proper orthogonal decomposition (POD) modes
in the context of the Galerkin projection of the Navier-Stokes equations.7,8 Continuous feedback can be used to physically
smooth experimental data and to estimate the temporal development of the POD modes. Romain et al.9 and Suzuki10 use
Kalman filters to integrate temporally resolved particle image velocimetry (PIV) data into reduced-order models based on
POD modes and DNS simulations of the Navier-Stokes equations, respectively. The corresponding feedback mechanism
thereby takes spatial and temporal correlations into account, which allows to obtain hybrid datasets of high Reynolds
number flows, even when the experimental data is noisy. The disadvantages of this method are its high memory and
computational requirements.6

In general though, the existing approaches focus on (i) time-resolved experimental data, which are frequently only
available in two-dimensional slices, and (ii) external flows, which are optically accessible using suitable measuring
techniques. By contrast to the aforementioned methods, the magnetic resonance velocimetry (MRV) enables the mea-
surement of fully three-dimensional velocity datasets of arbitrarily complex flows.11,12 In most cases, these datasets are
spatially highly resolved but also temporally averaged, that is, they do not necessarily fulfill the Navier-Stokes equations,
but the Reynolds-averaged Navier-Stokes (RANS) equations. From a numerical point of view, Lattice-Boltzmann (LB)
methods have proven to be a valuable tool for the simulation of complex flows in complex geometries.13-15 Boundary
conditions can readily be prescribed, the explicit formulation of the discretized LB equations allows for efficient paral-
lelization and computation, and meshing can be performed fully automatically. First coupled MRV-LB simulations have
been presented by Klemens et al.,16 which use the parameterized Bhatnagar-Gross-Krook (BGK) equation for porous
media to identify solid bodies in flow fields. Therefore, a distributed control problem for the minimization between the
MRV data and the LB results is solved using an adjoint method. An adjoint method for the adaptation of numerical
to experimental results is furthermore proposed in Lemke et al.17 One- and two-dimensional laminar flame configura-
tions are analyzed by means of variational data assimilation techniques. The adjoint is used to iteratively reduce the
gradient of the target function, which needs to be minimized regarding the differences between simulation and exper-
iment. This method is also employed by Lemke and Sesterhenn18 and Gray et al.19 In Lemke and Sesterhenn,18 the
difference between PIV measurements and simulation results is determined to obtain the pressure distribution. The
analyses in Gray et al.19 focus on the transition from deflagration to detonation in a detonation-shock chamber, for
which experimental pressure values are available. A simulation of the one-dimensional reactive Navier-Stokes equations
is adapted to the experiments. The method is steered with the help of the Arrhenius parameter and the diffusion
coefficients.

In the following, a novel method is presented to create hybrid datasets by incorporating experimental temporally
averaged MRV data into LB simulations with the aim of generating datasets that generally obey the RANS equations. These
hybrid datasets are guided by a steering parameter that determines how much a simulation is guided by the experimental
input. The results of the experiments, the pure LB simulation, and the hybrid approach are juxtaposed for the turbulent
flow in the wake of a bluff body.

The details on the methodology of the hybrid method are presented in Section 2. Subsequently, this method is applied
to generate a hybrid dataset in Section 3, before some conclusions are drawn in Section 4.

2 HYBRID SIMULATIONS USING AN LB METHOD

In this study, hybrid datasets are obtained by combining MRV datasets with an LB method. The latter has become an
increasingly popular method for the simulation of hydrodynamic problems. Unlike “traditional” computational fluid
dynamics methods, which solve the Navier-Stokes equations by, for example, finite-volume, -element, or -differences
methods, the LB method solves the discretized LB equation, that is,

fi(x + ci, t + 1) = Ωi + fi(x, t), (1)

where fi(x, t), i = 0,… , q − 1 are particle probability distribution functions (PPDFs) at position x and time t. The vectors
ci represent the respective discretized velocity vectors on a uniform lattice and Ωi is a collision term. Two-dimensional
lattices frequently use q = 9 directions, that is, the so-called D2Q9 discretization scheme.20 In three dimensions, the
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D3Q19 or D3Q27 schemes are commonly employed. The macroscopic variables such as the density 𝜌 or the momentum
𝜌u can be computed from the corresponding moments of the PPDFs, i.e., {𝜌, 𝜌u} =

∑q−1
i=0 {1, ci}fi. The left- and right-hand

sides of Equation (1) correspond to a streaming and collision step, respectively.
The lattice-BGK model21 implements the simplest form of the collision termΩi by introducing a single-relaxation-time

(SRT). In this case, the PPDFs are relaxed toward their local equilibrium f eq
i with a relaxation time 𝜏. Then, Equation (1)

becomes

fi(x + ci, t + 1) = 1
𝜏

[
f eq
i (x, t) − fi(x, t)

]
+ fi(x, t). (2)

The equilibrium term f eq
i is given by the Maxwell-Boltzmann distribution, which for small Mach numbers

Ma = |u|∕cs ≪ 1 can be expanded up to second order in the fluid velocity u to yield

f eq
i (x, t) = 𝜌ti

[
1 + (ci ⋅ u)

c2
s

+
(ci ⋅ u)2 − c2

s (u ⋅ u)
2c4

s

]
. (3)

In this equation, cs is the speed of sound in lattice units and ti are lattice specific constants. From Equations (2) and (3),
the Navier-Stokes equations can be recovered via the Chapman-Enskog expansion, which also results in an expressions
for the pressure P and the kinematic viscosity 𝜈, that is, P = 𝜌c2

s and 𝜈 = c2
s (𝜏 − 1∕2).

It should thus be noted that the collision term is a function of the viscosity 𝜈 and hence also of the Reynolds number
Re. For Re → ∞, 𝜈 → 0 and subsequently 1∕𝜏 → 2, which represents the upper stability limit of the SRT method. Despite
its simple nature, the SRT method is able to produce satisfactory results as long as the considered Mach number is chosen
to represent quasi-incompressible flow, the Reynolds number is low, and the resolution is sufficient. The limitation to
the Mach number is inherently given by the Taylor series expansion, which relies on small Mach numbers to obtain
Equation (3). The Reynolds number determines the size of turbulent scales, that is, with increasing Reynolds numbers
higher mesh resolutions are required to capture all relevant flow features. Nathen et al.22 performed investigations on the
impact of the mesh resolution on the stability of the BGK method. They found that stable results are obtained, if the flow
scales are sufficiently resolved. By contrast, if the turbulent flow scales are not sufficiently resolved, nonlinear instabilities
develop, which is also in agreement with other findings.23 For hybrid simulations, the aim is to keep the resolution as low
as possible, while using the experimental data to guide the simulation toward a plausible result. To avoid stability issues,
the so-called entropic multirelaxation time (MRT) LB method, or KBC model,24,25 is used. In this model, the PPDFs are
divided into a kinetic part ki and a part which contains the shear stress si and higher order terms hi: fi = ki + si + hi. The
collision term Ωi then becomes

Ωi =
1
𝜏

[(
seq

i − si
)
+ 𝛾

2
(

heq
i − hi

)]
, (4)

where seq
i and heq

i are obtained from f eq
i , and 𝛾 is an additional relaxation time for the higher order moments, which

enables unconditional numerical stability. Further moment-based methods, which could in principle also be used for the
proposed hybrid simulations, include the pure MRT26,27 and the cascaded LB (CLB)27,28 methods. The MRT decouples the
conservative from the nonconservative variables by using multiple relaxation times in moment space leading to higher
accuracy and stability. The two-relaxation-time (TRT)29 model represents a subset of the MRT methods and introduces
TRTs, that is, one each for even and odd order tensors. In the CLB method, moments up to fourth order are reconstructed
from lower order moments in a cascade to accurately capture oscillations of short wavelengths. A further collision model
is given by the regularized LB method,30 which splits the collision operator into equilibrium and nonequilibrium parts.
Using nonequilibrium shears, the collision term is then transformed into a solvable form. Furthermore, the cumulant
LB method31 introduces a collision operator based on the so-called cumulants and has shown good performance for high
Reynolds number flows. The stability of all these various methods can be analyzed by performing a Fourier transfor-
mation of the system of equations under the assumption of a linearized equilibrium term and then investigating the
eigenvalues of the iteration matrix in spectral space.23 For a more detailed review of LB methods the reader is referred to
Aidun and Clausen.32

The local equilibrium term, which is present in all collision models, offers a unique opportunity to incorporate exper-
imental velocity data. It requires a recomputation of the local density and velocity at each iteration in each individual
computational cell from the respective PPDFs. Instead of using the computed velocity from the LB simulation uLBM, either



4 of 10 MORRISON et al.

F I G U R E 1 Flow chart of the hybrid
simulations

the measured velocity uEXP or a blended combination of both

ũ = (1 − 𝜆)

[
1
𝜌

q−1∑
i=0

cifi(x, t)

]
+ 𝜆uEXP

= (1 − 𝜆)uLBM + 𝜆uEXP, (5)

can be used. The quantity 𝜆 ∈ [0, 1] is a factor, which dictates to which percentage the measured velocity should be used
compared with the simulated velocity. The Maxwellian equilibrium function with the updated blended velocity then reads

f eq
i (x, t) = 𝜌ti

[
1 + (ci ⋅ ũ)

c2
s

+
(ci ⋅ ũ)2 − c2

s (ũ ⋅ ũ)
2c4

s

]
. (6)

Using this method results in a hybrid dataset. To obtain the results presented in Section 3, the equilibrium term is
updated every 10 LB iterations at every position x, where experimental velocity data is available. A flow chart of the hybrid
simulations, focusing on the incorporation of the experimental data, is shown in Figure 1.

The blending factor 𝜆 is assumed to be constant in space and time. Note that 𝜆 could also be chosen to depend on
the reliability of the respective experimental data. All simulations are run using an extended version of the open-source
Palabos library.1

3 FLOW IN THE WAKE OF A BLUFF BODY

To benchmark the proposed approach, a case by Elkins et al.,33 which is similar to the backward facing step in a channel
flow, is chosen. Elkins et al. conducted both MRV and PIV experiments for this case. The MRV measurements were
subsequently repeated by Freudenhammer et al.,34 thus providing the authors of this article with a full three-dimensional

1https://palabos.unige.ch/

https://palabos.unige.ch/
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(A)

(B)

F I G U R E 2 Time-averaged horizontal velocity component as, A, measured with MRV, B, obtained from the two-dimensional LB
simulation with 𝜆 = 0. LB, Lattice-Boltzmann; MRV, magnetic resonance velocimetry

MRV dataset. The benchmark considers a wall-mounted bluff body in the shape of quarter of a circular cylinder with a
radius of H = 30mm. The rounded side of the body faces upstream and the cylinder covers the entire width of the square
channel. The channel has a width and height ofΔy = Δz = 50mm and isΔx = 550mm long. At the inlet, 100mm upstream
of the body, a block velocity profile with a free-stream velocity of UEXP = 0.41m/s is generated. The chosen fluid for the
flow is water. The Reynolds number of the problem is ReEXP = UEXPH∕𝜈 = 12, 300, which results in an unsteady flow
downstream of the body. The resolution of the available dataset corresponds to approximately NEXP = 30 data points per
body height. Figure 2A shows the time-averaged MRV velocity component in x-direction normalized by the free-stream
velocity u∕U. As expected, a recirculation zone, which extends up to x∕H ∼ 8, exists behind the body.

The benchmark is initially simulated with a two-dimensional LB method without incorporating the experimental
MRV data, that is, using 𝜆 = 0. The simulation is run at the same Reynolds number as in the experiments, namely,
ReLBM = ULBMH∕𝜈 = ReEXP = 12,300. The resolution is NLBM = 100 cells per body height. With the bottom right corner of
the bluff body placed at x∕H = 0 and y∕H = 0, the simulation domain extends over −3.5 ≤ x∕H ≤ 18.5 in the horizontal
direction and 0 ≤ y∕H ≤ 1.67 in the vertical direction, resulting in a total of 310,968 cells. The inlet boundary is placed
at x∕H = −3.5, where the boundary velocity ub is given by the lattice velocity ub = ULBM, such that the flow is in positive
x-direction. The lattice velocity itself is set to ULBM = 0.01, so as to also allow for considerably larger local velocities, which
are particularly to be expected directly above and behind the bluff body. At the upper and lower boundaries at y∕H = 0
and y∕H = 1.67, respectively, no-slip wall boundary conditions are prescribed. For numerical stability, the velocity bound-
aries employ the Tamm-Mott-Smith (TMS) approximation.35 Following this approach, the PPDFs at the boundaries are
computed by using a combination of the known PPDFs and a target velocity and density, utgt and 𝜌tgt, with the missing
PPDFs denoted as a subset fi, i ∈ D:

fi =
{

2f eq
i (𝜌tgt,utgt) − f eq

i (𝜌∗,u∗), i ∈ D
fi + f eq

i (𝜌tgt,utgt) − f eq
i (𝜌∗,u∗), i ∉ D

(7)

with

𝜌∗ =
∑
i∈D

f eq
i (𝜌tgt,utgt) +

∑
i∉D

fi (8)

u∗ = 1
𝜌∗

⎛⎜⎜⎝
∑
i∈D

f eq
i (𝜌tgt,utgt)ci +

∑
i∉D

fici

⎞⎟⎟⎠ . (9)

For velocity boundaries, the target velocity is given by the specified boundary velocity utgt = ub. The target density
can then be computed by36 𝜌tgt = (2f+ + fb)∕(1 + ub), where f+ is the sum of all PPDFs pointing out of the domain
and fb is the sum of the PPDFs on the boundary. The outflow boundary at x∕H = 18.5 uses the approach described
by Chikatamarla et al.37 The bluff body is treated using a combination of the interpolated bounce-back scheme from
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Bouzidi et al.38 and the TMS approximation, as previously used by Morrison and Leder.39 The required wall distances are
calculated analytically.

Figure 2B shows the time-averaged x-velocity component from the simulation after 106 LB iterations. Clearly, the
resulting recirculation zone behind the body is much shorter compared with the MRV measurement results, cf. Figure 2A.
It extends to only x∕H ∼ 3.2. This is most likely due to the missing influence of the lateral walls and the fact that no
three-dimensional effects can be captured with a two-dimensional simulation. From the results it is clear that the bench-
mark is three-dimensional by nature. It is precisely the large error of the simulation though, which makes it the ideal
case for the proposed hybrid simulation method. The idea is that by adding information from the measurements, the
simulation will be “nudged” toward the desired solution, while still providing a good solution of the RANS equation.

It is worth pointing out that the test case could in fact also be simulated with a fully three-dimensional LB simulation.
With correct boundary conditions and sufficient accuracy, this simulation would also provide the correct flow around the
bluff body. While this would clearly increase the computational costs of the simulation, the proposed novel approach does
not primarily aim at reducing the run time needed to obtain a correct dataset. Instead it can be used to avoid complex
boundary conditions, for example, regarding an accurate velocity profile at the inlet, and the need for large resolutions
when simulating turbulent flows. At the same time, potentially noisy experimental data can be corrected and the dataset
can be extended by the simulation, for example, in the vicinity of boundaries, which cannot always be sufficiently captured
by the experiments. Nevertheless, obtaining such an experimental dataset is also relatively time-consuming and may even
outweigh the reduced computational costs between a carefully constructed LB simulation and a hybrid simulation in
some cases.

In order to incorporate the MRV data, the measured velocities are first interpolated onto the LB lattice using tri-linear
interpolation. No further filtering or manipulation of the measurement data is introduced, that is, potential outliers and
noise resulting from measurement uncertainties are still contained. The objective is to show that the method presented in
Section 2 is able to create hybrid datasets, which allow to reconstruct MRV data while simultaneously applying a physical
smoothing to eliminate potential outliers.

The time-averaged MRV data is incorporated into the simulation using Equation (5) and an arbitrarily fixed 𝜆.
Although the equilibrium PPDFs are calculated in each cell at each LB iteration, the velocity ũ is updated using the MRV
data only every 10 LB iterations. In all intermediate iterations, the LB method is allowed to evolve without modifica-
tion. Furthermore, the MRV data is only integrated into cells where data is available from the lattice interpolation. The
simulation setup itself remains identical to the pure LB case outlined above.

Using this method, the simulation should ideally be guided toward a solution that, when averaged over time, is
governed by the RANS equations, which read

uj
𝜕ui

𝜕xj
+ 1

𝜌

𝜕P
𝜕xi

− 𝜈
𝜕2ui

𝜕x2
j

= −
𝜕Rij

𝜕xj
ei. (10)

In this equation, the Einstein summation convention is used. The quantities ui are the time-averaged velocity vector
components, P is the time-averaged pressure, Rij = u′

iu
′
j are the components of the Reynolds stress tensor R, and ei is the

respective unit vector. The right-hand side is effectively the divergence of the Reynolds stress tensor (div(R)). Furthermore,
all terms on the left-hand side of Equation (10) can be determined by computing the corresponding macroscopic fluid
variables from the PPDFs, with u and P = 𝜌c2

s being updated at every LB iteration. The respective gradients are determined
in a postprocessing step. That is, if the hybrid simulation is able to reproduce the time average of the fully turbulent flow as
measured by the MRV, the divergence of the Reynolds stress tensor can be calculated by Equation (10) when all left-hand
side terms are determined by the results of the hybrid simulation.

Figure 3 depicts the contours of the left-hand side terms for several hybrid simulations with varying 𝜆 ∈ {0, 1 ⋅ 10−4, 5 ⋅
10−4, 1 ⋅ 10−3, 1 ⋅ 10−2}. From these results it is obvious that the larger 𝜆, the more the simulation is forced toward the
incorporated experimental data. The bottom image shows the Reynolds stress term values calculated from experimental
data obtained with laser Doppler anemometry (LDA). The Reynolds stress term has low values in the area upstream of
the body and has two distinct areas of higher values at the edges of the shear layer. The top image of Figure 3 shows the
simulation results without any influence of the experimental data. The contour plot features large values across large
areas downstream of the bluff body. When compared with the LDA results, it becomes clear that in this case the computed
flow is far from a physically meaningful turbulent flow. Obviously, the right-hand side of Equation (10), i.e., the Reynolds
stress term, dominates the whole equation. The images below show the simulation results with increasing 𝜆 and hence
an increasing influence of the experimental data is visible. Already for low values of 𝜆, that is, 𝜆 = 5 ⋅ 10−4, the overall
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F I G U R E 3 Magnitude of the divergence of the Reynolds stress
tensor, determined via Equation (10) for the two-dimensional
Lattice-Boltzmann simulation (top) and several hybrid datasets
(middle) and as measured via LDA (bottom). The scale is identical for
all depicted cases. LDA, laser Doppler anemometry

magnitude of the Reynolds stress term drops significantly and higher values are only observed at the edges of the shear
layer that originates from the top of the bluff body. Comparing the contour plot of 𝜆 = 5 ⋅ 10−4 with the LDA results reveals
that it is closest to the measured data, i.e., the LDA measurements are well reproduced, especially when considering
that only time-averaged velocity data is introduced into the hybrid simulations. The right-hand side of Equation (10)
depends on the gradients of the Reynolds stresses. These stresses do not originate from the molecular viscosity, which is
the reason they are not covered by the third term on the left-hand side of Equation (10). In fact, they lie within the shear
layer, the position of which is clearly visible in Figure 4, which shows a line-plot of the time-averaged horizontal velocity
component at x∕H = 1. In this figure, the agreement between the hybrid simulation and the experimental data is slightly
better for 𝜆 = 1 ⋅ 10−2 compared with 𝜆 = 5 ⋅ 10−4, despite the fact that in the latter case, the hybrid simulation is able
to produce the best results for the divergence of the Reynolds stress tensor. Although the velocity profile for 𝜆 = 5 ⋅ 10−4

generally follows the measured MRV points in Figure 4, the deviation overall increases in comparison to 𝜆 = 1 ⋅ 10−2. This
is especially visible at y∕H ≤ 0.8, where the velocity is slightly overestimated by the hybrid simulation. Nevertheless, with
higher values for 𝜆 the hybrid simulation is forced to reproduce more and more local fluctuations of the experimental
data, which are most likely the result of measurement noise. Therefore, in Figure 3, larger values of the Reynolds stress
term appear in small spatial structures all over the flow field for 𝜆 = 1 ⋅ 10−2. These nonphysical stresses override the
physical turbulent Reynolds stresses in the shear layer which are not clearly visible anymore.

Finally, Figure 5 juxtaposes the contours of the averaged velocity in x-direction in the vicinity of the body in
the mid-plane of the unfiltered MRV data and the two-dimensional hybrid simulation results for 𝜆 = 5 ⋅ 10−4. It
becomes apparent that the hybrid simulation is able to smooth the data while still preserving the general flow features.
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F I G U R E 4 Time-averaged horizontal velocity component at
x∕H = 1

(A)

(B)

F I G U R E 5 Time-averaged horizontal velocity component as
measured with A, MRV and B, from a two-dimensional hybrid simulation
with 𝜆 = 5 ⋅ 10−4. MRV, magnetic resonance velocimetry

Furthermore, the hybrid dataset also provides the pressure and velocity in close proximity to the wall, which becomes
especially important when wall shear stresses are of interest.

4 CONCLUSION

Overall, the proposed approach of incorporating experimental MRV data into LB simulations via the equilibrium term
has shown to provide excellent results. The measured velocity is physically smoothed without violating the underlying
RANS equations. In two dimensions, an optimal choice of the parameter 𝜆 has proven to reproduce the contribution
from the Reynolds stress tensor. This is especially of interest considering that only time-averaged velocity data has been
incorporated into the simulations. This preliminary study, however, also revealed that there is no resilient method yet
to determine which value for 𝜆 is best. The determination of an ideal 𝜆 is not straightforward and certainly an aspect to
consider in more detail in future work. That is, the presented approach offers an ideal basis for further investigations in the
direction of hybrid datasets based on LB simulations, eventually enabling a physically based smoothing and correction of
any kind of experimental velocity data. Simultaneously, this approach will allow for spatially more extended simulations,
which are locally influenced and guided by the incorporated data.
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