000877314 001__ 877314
000877314 005__ 20210130005007.0
000877314 0247_ $$2doi$$a10.1016/j.neurobiolaging.2020.05.009
000877314 0247_ $$2ISSN$$a0197-4580
000877314 0247_ $$2ISSN$$a1558-1497
000877314 0247_ $$2Handle$$a2128/25254
000877314 0247_ $$2altmetric$$aaltmetric:84093297
000877314 0247_ $$2pmid$$apmid:32593032
000877314 0247_ $$2WOS$$aWOS:000563977000012
000877314 037__ $$aFZJ-2020-02130
000877314 082__ $$a610
000877314 1001_ $$0P:(DE-HGF)0$$aDinkelbach, Lars$$b0
000877314 245__ $$aSomatosensory area 3b is selectively unaffected in corticobasal syndrome: Combining MRI and histology
000877314 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000877314 3367_ $$2DRIVER$$aarticle
000877314 3367_ $$2DataCite$$aOutput Types/Journal article
000877314 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594216152_8340
000877314 3367_ $$2BibTeX$$aARTICLE
000877314 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877314 3367_ $$00$$2EndNote$$aJournal Article
000877314 520__ $$aAn increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance–based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance–based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
000877314 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000877314 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000877314 588__ $$aDataset connected to CrossRef
000877314 7001_ $$0P:(DE-HGF)0$$aSüdmeyer, Martin$$b1
000877314 7001_ $$0P:(DE-HGF)0$$aHartmann, Christian Johannes$$b2
000877314 7001_ $$0P:(DE-HGF)0$$aRoeber, Sigrun$$b3
000877314 7001_ $$0P:(DE-HGF)0$$aArzberger, Thomas$$b4
000877314 7001_ $$0P:(DE-HGF)0$$aFelsberg, Jörg$$b5
000877314 7001_ $$0P:(DE-HGF)0$$aFerrea, Stefano$$b6
000877314 7001_ $$0P:(DE-HGF)0$$aMoldovan, Alexia-Sabine$$b7
000877314 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b8
000877314 7001_ $$0P:(DE-HGF)0$$aSchnitzler, Alfons$$b9
000877314 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b10$$eCorresponding author
000877314 773__ $$0PERI:(DE-600)1498414-3$$a10.1016/j.neurobiolaging.2020.05.009$$gp. S0197458020301640$$p89-100$$tNeurobiology of aging$$v94$$x0197-4580$$y2020
000877314 8564_ $$uhttps://juser.fz-juelich.de/record/877314/files/1-s2.0-S0197458020301640-main.pdf$$yOpenAccess
000877314 8564_ $$uhttps://juser.fz-juelich.de/record/877314/files/1-s2.0-S0197458020301640-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877314 909CO $$ooai:juser.fz-juelich.de:877314$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000877314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b8$$kFZJ
000877314 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b10$$kFZJ
000877314 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000877314 9141_ $$y2020
000877314 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000877314 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000877314 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROBIOL AGING : 2018$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877314 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000877314 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000877314 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000877314 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000877314 980__ $$ajournal
000877314 980__ $$aVDB
000877314 980__ $$aUNRESTRICTED
000877314 980__ $$aI:(DE-Juel1)INM-1-20090406
000877314 9801_ $$aFullTexts