001     877314
005     20210130005007.0
024 7 _ |a 10.1016/j.neurobiolaging.2020.05.009
|2 doi
024 7 _ |a 0197-4580
|2 ISSN
024 7 _ |a 1558-1497
|2 ISSN
024 7 _ |a 2128/25254
|2 Handle
024 7 _ |a altmetric:84093297
|2 altmetric
024 7 _ |a pmid:32593032
|2 pmid
024 7 _ |a WOS:000563977000012
|2 WOS
037 _ _ |a FZJ-2020-02130
082 _ _ |a 610
100 1 _ |a Dinkelbach, Lars
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Somatosensory area 3b is selectively unaffected in corticobasal syndrome: Combining MRI and histology
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1594216152_8340
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An increasing number of neuroimaging studies addressing patients with corticobasal syndrome use macroscopic definitions of brain regions. As a closer link to functionally relevant units, we aimed at identifying magnetic resonance–based atrophy patterns in regions defined by probability maps of cortical microstructure. For this purpose, three analyses were conducted: (1) Whole-brain cortical thickness was compared between 36 patients with corticobasal syndrome and 24 controls. A pattern of pericentral atrophy was found, covering primary motor area 4, premotor area 6, and primary somatosensory areas 1, 2, and 3a. Within the central region, only area 3b was without atrophy. (2) In 18 patients, longitudinal measures with follow-ups of up to 59 months (mean 21.3 ± 15.4) were analyzed. Areas 1, 2, and 6 showed significantly faster atrophy rates than primary somatosensory area 3b. (3) In an individual autopsy case, longitudinal in vivo morphometry and postmortem pathohistology were conducted. The rate of magnetic resonance–based atrophy was significantly correlated with tufted-astrocyte load in those cytoarchitectonically defined regions also seen in the group study, with area 3b being selectively unaffected.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Südmeyer, Martin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hartmann, Christian Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Roeber, Sigrun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Arzberger, Thomas
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Felsberg, Jörg
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ferrea, Stefano
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Moldovan, Alexia-Sabine
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 8
700 1 _ |a Schnitzler, Alfons
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 10
|e Corresponding author
773 _ _ |a 10.1016/j.neurobiolaging.2020.05.009
|g p. S0197458020301640
|0 PERI:(DE-600)1498414-3
|p 89-100
|t Neurobiology of aging
|v 94
|y 2020
|x 0197-4580
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877314/files/1-s2.0-S0197458020301640-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877314/files/1-s2.0-S0197458020301640-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877314
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131675
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-11
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL AGING : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21