000877320 001__ 877320
000877320 005__ 20210130005011.0
000877320 0247_ $$2doi$$a10.3389/fpsyt.2020.00342
000877320 0247_ $$2Handle$$a2128/24931
000877320 0247_ $$2altmetric$$aaltmetric:81618345
000877320 0247_ $$2pmid$$apmid:32425831
000877320 0247_ $$2WOS$$aWOS:000536353400001
000877320 037__ $$aFZJ-2020-02136
000877320 082__ $$a610
000877320 1001_ $$0P:(DE-HGF)0$$aBeaudet, Grégory$$b0
000877320 245__ $$aAge-related changes of Peak Width Skeletonized Mean Diffusivity (PSMD) Across the adult lifespan: A multi-cohort study
000877320 260__ $$aLausanne$$bFrontiers Research Foundation$$c2020
000877320 3367_ $$2DRIVER$$aarticle
000877320 3367_ $$2DataCite$$aOutput Types/Journal article
000877320 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591089786_5616
000877320 3367_ $$2BibTeX$$aARTICLE
000877320 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877320 3367_ $$00$$2EndNote$$aJournal Article
000877320 520__ $$aParameters of water diffusion in white matter derived from diffusion-weighted imaging (DWI), such as fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AD, and RD), and more recently, peak width of skeletonized mean diffusivity (PSMD), have been proposed as potential markers of normal and pathological brain ageing. However, their relative evolution over the entire adult lifespan in healthy individuals remains partly unknown during early and late adulthood, and particularly for the PSMD index. Here, we gathered and analyzed cross-sectional diffusion tensor imaging (DTI) data from 10 population-based cohort studies in order to establish the time course of white matter water diffusion phenotypes from post-adolescence to late adulthood. DTI data were obtained from a total of 20,005 individuals aged 18.1 to 92.6 years and analyzed with the same pipeline for computing skeletonized DTI metrics from DTI maps. For each individual, MD, AD, RD, and FA mean values were computed over their FA volume skeleton, PSMD being calculated as the 90% peak width of the MD values distribution across the FA skeleton. Mean values of each DTI metric were found to strongly vary across cohorts, most likely due to major differences in DWI acquisition protocols as well as pre-processing and DTI model fitting. However, age effects on each DTI metric were found to be highly consistent across cohorts. RD, MD, and AD variations with age exhibited the same U-shape pattern, first slowly decreasing during post-adolescence until the age of 30, 40, and 50 years, respectively, then progressively increasing until late life. FA showed a reverse profile, initially increasing then continuously decreasing, slowly until the 70s, then sharply declining thereafter. By contrast, PSMD constantly increased, first slowly until the 60s, then more sharply. These results demonstrate that, in the general population, age affects PSMD in a manner different from that of other DTI metrics. The constant increase in PSMD throughout the entire adult life, including during post-adolescence, indicates that PSMD could be an early marker of the ageing process.
000877320 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000877320 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000877320 588__ $$aDataset connected to CrossRef
000877320 7001_ $$0P:(DE-HGF)0$$aTsuchida, Ami$$b1
000877320 7001_ $$0P:(DE-HGF)0$$aPetit, Laurent$$b2
000877320 7001_ $$0P:(DE-HGF)0$$aTzourio, Christophe$$b3
000877320 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b4
000877320 7001_ $$0P:(DE-Juel1)169295$$aSchreiber, Jan$$b5
000877320 7001_ $$0P:(DE-HGF)0$$aPausova, Zdenka$$b6
000877320 7001_ $$0P:(DE-HGF)0$$aPatel, Yash$$b7
000877320 7001_ $$0P:(DE-HGF)0$$aPaus, Tomas$$b8
000877320 7001_ $$aSchmidt, Reinhold$$b9
000877320 7001_ $$aPirpamer, Lukas$$b10
000877320 7001_ $$aSachdev, Perminder S.$$b11
000877320 7001_ $$aBrodaty, Henry$$b12
000877320 7001_ $$aKochan, Nicole$$b13
000877320 7001_ $$aTrollor, Julian$$b14
000877320 7001_ $$aWen, Wei$$b15
000877320 7001_ $$aArmstrong, Nicola J.$$b16
000877320 7001_ $$aDeary, Ian J.$$b17
000877320 7001_ $$aBastin, Mark E.$$b18
000877320 7001_ $$aWardlaw, Joanna M.$$b19
000877320 7001_ $$aMunõz Maniega, Susana$$b20
000877320 7001_ $$aWitte, A. Veronica$$b21
000877320 7001_ $$aVillringer, Arno$$b22
000877320 7001_ $$aDuering, Marco$$b23
000877320 7001_ $$aDebette, Stéphanie$$b24
000877320 7001_ $$0P:(DE-HGF)0$$aMazoyer, Bernard$$b25$$eCorresponding author
000877320 773__ $$0PERI:(DE-600)2564218-2$$a10.3389/fpsyt.2020.00342$$gVol. 11, p. 342$$p342$$tFrontiers in psychiatry$$v11$$x1664-0640$$y2020
000877320 8564_ $$uhttps://juser.fz-juelich.de/record/877320/files/Beaudet_etal_Front%20in%20Psych_2020.pdf$$yOpenAccess
000877320 8564_ $$uhttps://juser.fz-juelich.de/record/877320/files/Beaudet_etal_Front%20in%20Psych_2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877320 909CO $$ooai:juser.fz-juelich.de:877320$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000877320 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b4$$kFZJ
000877320 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169295$$aForschungszentrum Jülich$$b5$$kFZJ
000877320 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000877320 9141_ $$y2020
000877320 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2020-01-06
000877320 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877320 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PSYCHIATRY : 2018$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877320 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-06
000877320 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000877320 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000877320 980__ $$ajournal
000877320 980__ $$aVDB
000877320 980__ $$aUNRESTRICTED
000877320 980__ $$aI:(DE-Juel1)INM-1-20090406
000877320 9801_ $$aFullTexts