000877329 001__ 877329
000877329 005__ 20210130005014.0
000877329 0247_ $$2doi$$a10.1063/1.5140259
000877329 0247_ $$2ISSN$$a0003-6951
000877329 0247_ $$2ISSN$$a1077-3118
000877329 0247_ $$2ISSN$$a1520-8842
000877329 0247_ $$2Handle$$a2128/25722
000877329 0247_ $$2WOS$$aWOS:000513133500013
000877329 037__ $$aFZJ-2020-02145
000877329 082__ $$a530
000877329 1001_ $$0P:(DE-Juel1)171354$$aLiang, Sijia$$b0$$eCorresponding author
000877329 245__ $$aTunable surface acoustic waves on strain-engineered relaxor K 0.7 Na 0.3 NbO 3 thin films
000877329 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2020
000877329 3367_ $$2DRIVER$$aarticle
000877329 3367_ $$2DataCite$$aOutput Types/Journal article
000877329 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600880934_17523
000877329 3367_ $$2BibTeX$$aARTICLE
000877329 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877329 3367_ $$00$$2EndNote$$aJournal Article
000877329 520__ $$aIn this work we demonstrate the electronic tunability of surface acoustic waves (SAWs) in epitaxially strained relaxor-type ferroelectric thin films. Epitaxial K0.7Na0.3NbO3 thin films of typically 30 nm in thickness are grown via pulsed laser deposition on (110)-oriented TbScO3. A partial plastic lattice relaxation of the epitaxial strain in these samples leads to a relaxor-type ferroelectricity of these films, which strongly affects the SAW properties. Without electronic bias only tiny SAW signals of ~0.2 dB can be detected at room temperature, which can be boosted up to 4 dB by a static voltage (DC) bias added to the high frequency (HF) driving current of the SAW transducers. Upon field cooling below the freezing temperature of polar nano regions (PNRs), this strong SAW signal can be preserved and is even enhanced due to a release of the electronically fixed PNRs if the bias is removed. In contrast, at elevated temperatures, a reversible switching of the SAW signal is possible. The switching shows relaxation dynamics that are typical for relaxor ferroelectrics. The relaxation time  decreases exponentially from several hours at freezing temperature to a few seconds (<5 s) at room temperature.
000877329 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000877329 588__ $$aDataset connected to CrossRef
000877329 7001_ $$0P:(DE-HGF)0$$aPfützenreuter, D.$$b1
000877329 7001_ $$0P:(DE-Juel1)177032$$aFinck, Dennis$$b2
000877329 7001_ $$00000-0001-8052-1444$$avon Helden, L.$$b3
000877329 7001_ $$00000-0002-8919-3608$$aSchwarzkopf, J.$$b4
000877329 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, R.$$b5
000877329 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5140259$$gVol. 116, no. 5, p. 052902 -$$n5$$p052902 -$$tApplied physics letters$$v116$$x1077-3118$$y2020
000877329 8564_ $$uhttps://juser.fz-juelich.de/record/877329/files/1.5140259.pdf$$yPublished on 2020-02-06. Available in OpenAccess from 2021-02-06.
000877329 8564_ $$uhttps://juser.fz-juelich.de/record/877329/files/1.5140259.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-02-06. Available in OpenAccess from 2021-02-06.
000877329 909CO $$ooai:juser.fz-juelich.de:877329$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877329 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171354$$aForschungszentrum Jülich$$b0$$kFZJ
000877329 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b5$$kFZJ
000877329 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000877329 9141_ $$y2020
000877329 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877329 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2018$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-14$$wger
000877329 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000877329 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-14$$wger
000877329 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000877329 920__ $$lno
000877329 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000877329 980__ $$ajournal
000877329 980__ $$aVDB
000877329 980__ $$aUNRESTRICTED
000877329 980__ $$aI:(DE-Juel1)IBI-3-20200312
000877329 9801_ $$aFullTexts