| Hauptseite > Publikationsdatenbank > Tunable surface acoustic waves on strain-engineered relaxor K 0.7 Na 0.3 NbO 3 thin films > print |
| 001 | 877329 | ||
| 005 | 20210130005014.0 | ||
| 024 | 7 | _ | |a 10.1063/1.5140259 |2 doi |
| 024 | 7 | _ | |a 0003-6951 |2 ISSN |
| 024 | 7 | _ | |a 1077-3118 |2 ISSN |
| 024 | 7 | _ | |a 1520-8842 |2 ISSN |
| 024 | 7 | _ | |a 2128/25722 |2 Handle |
| 024 | 7 | _ | |a WOS:000513133500013 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02145 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Liang, Sijia |0 P:(DE-Juel1)171354 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Tunable surface acoustic waves on strain-engineered relaxor K 0.7 Na 0.3 NbO 3 thin films |
| 260 | _ | _ | |a Melville, NY |c 2020 |b American Inst. of Physics |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600880934_17523 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In this work we demonstrate the electronic tunability of surface acoustic waves (SAWs) in epitaxially strained relaxor-type ferroelectric thin films. Epitaxial K0.7Na0.3NbO3 thin films of typically 30 nm in thickness are grown via pulsed laser deposition on (110)-oriented TbScO3. A partial plastic lattice relaxation of the epitaxial strain in these samples leads to a relaxor-type ferroelectricity of these films, which strongly affects the SAW properties. Without electronic bias only tiny SAW signals of ~0.2 dB can be detected at room temperature, which can be boosted up to 4 dB by a static voltage (DC) bias added to the high frequency (HF) driving current of the SAW transducers. Upon field cooling below the freezing temperature of polar nano regions (PNRs), this strong SAW signal can be preserved and is even enhanced due to a release of the electronically fixed PNRs if the bias is removed. In contrast, at elevated temperatures, a reversible switching of the SAW signal is possible. The switching shows relaxation dynamics that are typical for relaxor ferroelectrics. The relaxation time decreases exponentially from several hours at freezing temperature to a few seconds (<5 s) at room temperature. |
| 536 | _ | _ | |a 523 - Controlling Configuration-Based Phenomena (POF3-523) |0 G:(DE-HGF)POF3-523 |c POF3-523 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Pfützenreuter, D. |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Finck, Dennis |0 P:(DE-Juel1)177032 |b 2 |
| 700 | 1 | _ | |a von Helden, L. |0 0000-0001-8052-1444 |b 3 |
| 700 | 1 | _ | |a Schwarzkopf, J. |0 0000-0002-8919-3608 |b 4 |
| 700 | 1 | _ | |a Wördenweber, R. |0 P:(DE-Juel1)128749 |b 5 |
| 773 | _ | _ | |a 10.1063/1.5140259 |g Vol. 116, no. 5, p. 052902 - |0 PERI:(DE-600)1469436-0 |n 5 |p 052902 - |t Applied physics letters |v 116 |y 2020 |x 1077-3118 |
| 856 | 4 | _ | |y Published on 2020-02-06. Available in OpenAccess from 2021-02-06. |u https://juser.fz-juelich.de/record/877329/files/1.5140259.pdf |
| 856 | 4 | _ | |y Published on 2020-02-06. Available in OpenAccess from 2021-02-06. |x pdfa |u https://juser.fz-juelich.de/record/877329/files/1.5140259.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:877329 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171354 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128749 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-523 |2 G:(DE-HGF)POF3-500 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-14 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-14 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-14 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-14 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-14 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-14 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APPL PHYS LETT : 2018 |d 2020-01-14 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-01-14 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-14 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-01-14 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-14 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|