001     877329
005     20210130005014.0
024 7 _ |a 10.1063/1.5140259
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/25722
|2 Handle
024 7 _ |a WOS:000513133500013
|2 WOS
037 _ _ |a FZJ-2020-02145
082 _ _ |a 530
100 1 _ |a Liang, Sijia
|0 P:(DE-Juel1)171354
|b 0
|e Corresponding author
245 _ _ |a Tunable surface acoustic waves on strain-engineered relaxor K 0.7 Na 0.3 NbO 3 thin films
260 _ _ |a Melville, NY
|c 2020
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600880934_17523
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this work we demonstrate the electronic tunability of surface acoustic waves (SAWs) in epitaxially strained relaxor-type ferroelectric thin films. Epitaxial K0.7Na0.3NbO3 thin films of typically 30 nm in thickness are grown via pulsed laser deposition on (110)-oriented TbScO3. A partial plastic lattice relaxation of the epitaxial strain in these samples leads to a relaxor-type ferroelectricity of these films, which strongly affects the SAW properties. Without electronic bias only tiny SAW signals of ~0.2 dB can be detected at room temperature, which can be boosted up to 4 dB by a static voltage (DC) bias added to the high frequency (HF) driving current of the SAW transducers. Upon field cooling below the freezing temperature of polar nano regions (PNRs), this strong SAW signal can be preserved and is even enhanced due to a release of the electronically fixed PNRs if the bias is removed. In contrast, at elevated temperatures, a reversible switching of the SAW signal is possible. The switching shows relaxation dynamics that are typical for relaxor ferroelectrics. The relaxation time  decreases exponentially from several hours at freezing temperature to a few seconds (<5 s) at room temperature.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pfützenreuter, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Finck, Dennis
|0 P:(DE-Juel1)177032
|b 2
700 1 _ |a von Helden, L.
|0 0000-0001-8052-1444
|b 3
700 1 _ |a Schwarzkopf, J.
|0 0000-0002-8919-3608
|b 4
700 1 _ |a Wördenweber, R.
|0 P:(DE-Juel1)128749
|b 5
773 _ _ |a 10.1063/1.5140259
|g Vol. 116, no. 5, p. 052902 -
|0 PERI:(DE-600)1469436-0
|n 5
|p 052902 -
|t Applied physics letters
|v 116
|y 2020
|x 1077-3118
856 4 _ |y Published on 2020-02-06. Available in OpenAccess from 2021-02-06.
|u https://juser.fz-juelich.de/record/877329/files/1.5140259.pdf
856 4 _ |y Published on 2020-02-06. Available in OpenAccess from 2021-02-06.
|x pdfa
|u https://juser.fz-juelich.de/record/877329/files/1.5140259.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877329
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171354
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128749
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2018
|d 2020-01-14
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21