000877330 001__ 877330
000877330 005__ 20210130005014.0
000877330 0247_ $$2doi$$a10.1021/acsami.0c02141
000877330 0247_ $$2ISSN$$a1944-8244
000877330 0247_ $$2ISSN$$a1944-8252
000877330 0247_ $$2Handle$$a2128/26194
000877330 0247_ $$2altmetric$$aaltmetric:78424556
000877330 0247_ $$2pmid$$apmid:32186363
000877330 0247_ $$2WOS$$aWOS:000526583500121
000877330 037__ $$aFZJ-2020-02146
000877330 082__ $$a600
000877330 1001_ $$0P:(DE-Juel1)171357$$aYuan, Xiaobo$$b0$$eCorresponding author
000877330 245__ $$aEngineering Biocompatible Interfaces via Combinations of Oxide Films and Organic Self-Assembled Monolayers
000877330 260__ $$aWashington, DC$$bSoc.$$c2020
000877330 3367_ $$2DRIVER$$aarticle
000877330 3367_ $$2DataCite$$aOutput Types/Journal article
000877330 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605623267_3599
000877330 3367_ $$2BibTeX$$aARTICLE
000877330 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877330 3367_ $$00$$2EndNote$$aJournal Article
000877330 520__ $$aIn this paper, we demonstrate that cell adhesion and neuron maturation can be guided by patterned oxide surfaces functionalized with organic molecular layers. It is shown that the difference in the surface potential of various oxides (SiO2, Ta2O5, TiO2, and Al2O3) can be increased by functionalization with a silane, (3-aminopropyl)-triethoxysilane (APTES), which is deposited from the gas phase on the oxide. Furthermore, it seems that only physisorbed layers (no chemical binding) can be achieved for some oxides (Ta2O5 and TiO2), whereas self-assembled monolayers (SAM) form on other oxides (SiO2 and Al2O3). This does not only alter the surface potential but also affects the neuronal cell growth. The already high cell density on SiO2 is increased further by the chemically bound APTES SAM, whereas the already low cell density on Ta2O5 is even further reduced by the physisorbed APTES layer. As a result, the cell density is ∼8 times greater on SiO2 compared to Ta2O5, both coated with APTES. Furthermore, neurons form the typical networks on SiO2, whereas they tend to cluster to form neurospheres on Ta2O5. Using lithographically patterned Ta2O5 layers on SiO2 substrates functionalized with APTES, the guided growth can be transferred to complex patterns. Cell cultures and molecular layers can easily be removed, and the cell experiment can be repeated after functionalization of the patterned oxide surface with APTES. Thus, the combination of APTES-functionalized patterned oxides might offer a promising way of achieving guided neuronal growth on robust and reusable substrates.
000877330 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000877330 588__ $$aDataset connected to CrossRef
000877330 7001_ $$0P:(DE-Juel1)165172$$aWolf, Nikolaus$$b1
000877330 7001_ $$0P:(DE-Juel1)172817$$aHondrich, Timm$$b2
000877330 7001_ $$0P:(DE-Juel1)165189$$aShokoohimehr, Pegah$$b3
000877330 7001_ $$0P:(DE-Juel1)169481$$aMilos, Frano$$b4
000877330 7001_ $$0P:(DE-Juel1)177033$$aGlass, Manuel$$b5
000877330 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b6
000877330 7001_ $$0P:(DE-Juel1)128705$$aMaybeck, Vanessa$$b7
000877330 7001_ $$0P:(DE-Juel1)128719$$aPrömpers, Michael$$b8
000877330 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b9
000877330 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b10
000877330 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.0c02141$$gVol. 12, no. 14, p. 17121 - 17129$$n14$$p17121 - 17129$$tACS applied materials & interfaces$$v12$$x1944-8252$$y2020
000877330 8564_ $$uhttps://juser.fz-juelich.de/record/877330/files/ACS-Manuscript%20-%20Xiaobo%20Yuan%20-%202020.pdf$$yPublished on 2020-03-18. Available in OpenAccess from 2021-03-18.
000877330 8564_ $$uhttps://juser.fz-juelich.de/record/877330/files/acsami.0c02141.pdf$$yRestricted
000877330 8564_ $$uhttps://juser.fz-juelich.de/record/877330/files/acsami.0c02141.pdf?subformat=pdfa$$xpdfa$$yRestricted
000877330 909CO $$ooai:juser.fz-juelich.de:877330$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171357$$aForschungszentrum Jülich$$b0$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165172$$aForschungszentrum Jülich$$b1$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172817$$aForschungszentrum Jülich$$b2$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165189$$aForschungszentrum Jülich$$b3$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169481$$aForschungszentrum Jülich$$b4$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b6$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128705$$aForschungszentrum Jülich$$b7$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128719$$aForschungszentrum Jülich$$b8$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b9$$kFZJ
000877330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b10$$kFZJ
000877330 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000877330 9141_ $$y2020
000877330 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877330 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2018$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2018$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000877330 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000877330 920__ $$lno
000877330 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000877330 980__ $$ajournal
000877330 980__ $$aVDB
000877330 980__ $$aUNRESTRICTED
000877330 980__ $$aI:(DE-Juel1)IBI-3-20200312
000877330 9801_ $$aFullTexts