| Hauptseite > Publikationsdatenbank > Engineering Biocompatible Interfaces via Combinations of Oxide Films and Organic Self-Assembled Monolayers > print |
| 001 | 877330 | ||
| 005 | 20210130005014.0 | ||
| 024 | 7 | _ | |a 10.1021/acsami.0c02141 |2 doi |
| 024 | 7 | _ | |a 1944-8244 |2 ISSN |
| 024 | 7 | _ | |a 1944-8252 |2 ISSN |
| 024 | 7 | _ | |a 2128/26194 |2 Handle |
| 024 | 7 | _ | |a altmetric:78424556 |2 altmetric |
| 024 | 7 | _ | |a pmid:32186363 |2 pmid |
| 024 | 7 | _ | |a WOS:000526583500121 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-02146 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Yuan, Xiaobo |0 P:(DE-Juel1)171357 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Engineering Biocompatible Interfaces via Combinations of Oxide Films and Organic Self-Assembled Monolayers |
| 260 | _ | _ | |a Washington, DC |c 2020 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1605623267_3599 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In this paper, we demonstrate that cell adhesion and neuron maturation can be guided by patterned oxide surfaces functionalized with organic molecular layers. It is shown that the difference in the surface potential of various oxides (SiO2, Ta2O5, TiO2, and Al2O3) can be increased by functionalization with a silane, (3-aminopropyl)-triethoxysilane (APTES), which is deposited from the gas phase on the oxide. Furthermore, it seems that only physisorbed layers (no chemical binding) can be achieved for some oxides (Ta2O5 and TiO2), whereas self-assembled monolayers (SAM) form on other oxides (SiO2 and Al2O3). This does not only alter the surface potential but also affects the neuronal cell growth. The already high cell density on SiO2 is increased further by the chemically bound APTES SAM, whereas the already low cell density on Ta2O5 is even further reduced by the physisorbed APTES layer. As a result, the cell density is ∼8 times greater on SiO2 compared to Ta2O5, both coated with APTES. Furthermore, neurons form the typical networks on SiO2, whereas they tend to cluster to form neurospheres on Ta2O5. Using lithographically patterned Ta2O5 layers on SiO2 substrates functionalized with APTES, the guided growth can be transferred to complex patterns. Cell cultures and molecular layers can easily be removed, and the cell experiment can be repeated after functionalization of the patterned oxide surface with APTES. Thus, the combination of APTES-functionalized patterned oxides might offer a promising way of achieving guided neuronal growth on robust and reusable substrates. |
| 536 | _ | _ | |a 552 - Engineering Cell Function (POF3-552) |0 G:(DE-HGF)POF3-552 |c POF3-552 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Wolf, Nikolaus |0 P:(DE-Juel1)165172 |b 1 |
| 700 | 1 | _ | |a Hondrich, Timm |0 P:(DE-Juel1)172817 |b 2 |
| 700 | 1 | _ | |a Shokoohimehr, Pegah |0 P:(DE-Juel1)165189 |b 3 |
| 700 | 1 | _ | |a Milos, Frano |0 P:(DE-Juel1)169481 |b 4 |
| 700 | 1 | _ | |a Glass, Manuel |0 P:(DE-Juel1)177033 |b 5 |
| 700 | 1 | _ | |a Mayer, Dirk |0 P:(DE-Juel1)128707 |b 6 |
| 700 | 1 | _ | |a Maybeck, Vanessa |0 P:(DE-Juel1)128705 |b 7 |
| 700 | 1 | _ | |a Prömpers, Michael |0 P:(DE-Juel1)128719 |b 8 |
| 700 | 1 | _ | |a Offenhäusser, Andreas |0 P:(DE-Juel1)128713 |b 9 |
| 700 | 1 | _ | |a Wördenweber, Roger |0 P:(DE-Juel1)128749 |b 10 |
| 773 | _ | _ | |a 10.1021/acsami.0c02141 |g Vol. 12, no. 14, p. 17121 - 17129 |0 PERI:(DE-600)2467494-1 |n 14 |p 17121 - 17129 |t ACS applied materials & interfaces |v 12 |y 2020 |x 1944-8252 |
| 856 | 4 | _ | |y Published on 2020-03-18. Available in OpenAccess from 2021-03-18. |u https://juser.fz-juelich.de/record/877330/files/ACS-Manuscript%20-%20Xiaobo%20Yuan%20-%202020.pdf |
| 856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/877330/files/acsami.0c02141.pdf |
| 856 | 4 | _ | |y Restricted |x pdfa |u https://juser.fz-juelich.de/record/877330/files/acsami.0c02141.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:877330 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171357 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165172 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)172817 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)165189 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)169481 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)128707 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128705 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)128719 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)128713 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)128749 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-05 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-05 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS APPL MATER INTER : 2018 |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-05 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-05 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2018 |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-05 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-05 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBI-3-20200312 |k IBI-3 |l Bioelektronik |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|