000877335 001__ 877335
000877335 005__ 20210130005016.0
000877335 0247_ $$2doi$$a10.1021/acs.nanolett.9b05138
000877335 0247_ $$2ISSN$$a1530-6984
000877335 0247_ $$2ISSN$$a1530-6992
000877335 0247_ $$2Handle$$a2128/24935
000877335 0247_ $$2pmid$$apmid:32202802
000877335 0247_ $$2WOS$$aWOS:000535255300027
000877335 0247_ $$2altmetric$$aaltmetric:71232191
000877335 037__ $$aFZJ-2020-02148
000877335 082__ $$a660
000877335 1001_ $$0P:(DE-HGF)0$$aErsfeld, Manfred$$b0
000877335 245__ $$aUnveiling Valley Lifetimes of Free Charge Carriers in Monolayer WSe 2
000877335 260__ $$aWashington, DC$$bACS Publ.$$c2020
000877335 3367_ $$2DRIVER$$aarticle
000877335 3367_ $$2DataCite$$aOutput Types/Journal article
000877335 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591096788_5362
000877335 3367_ $$2BibTeX$$aARTICLE
000877335 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877335 3367_ $$00$$2EndNote$$aJournal Article
000877335 520__ $$aWe report on nanosecond-long, gate-dependent valley lifetimes of free charge carriers in monolayer WSe2, unambiguously identified by the combination of time-resolved Kerr rotation and electrical transport measurements. While the valley polarization increases when tuning the Fermi level into the conduction or valence band, there is a strong decrease of the respective valley lifetime consistent with both electron-phonon and spin-orbit scattering. The longest lifetimes are seen for spin-polarized bound excitons in the band gap region. We explain our findings via two distinct, Fermi-level-dependent scattering channels of optically excited, valley-polarized bright trions either via dark or bound states. By electrostatic gating we demonstrate that the transition-metal dichalcogenide WSe2 can be tuned to be either an ideal host for long-lived localized spin states or allow for nanosecond valley lifetimes of free charge carriers (>10 ns).
000877335 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000877335 588__ $$aDataset connected to CrossRef
000877335 7001_ $$0P:(DE-HGF)0$$aVolmer, Frank$$b1
000877335 7001_ $$0P:(DE-HGF)0$$aRathmann, Lars$$b2
000877335 7001_ $$0P:(DE-HGF)0$$aKotewitz, Luca$$b3
000877335 7001_ $$0P:(DE-HGF)0$$aHeithoff, Maximilian$$b4
000877335 7001_ $$0P:(DE-HGF)0$$aLohmann, Mark$$b5
000877335 7001_ $$0P:(DE-HGF)0$$aYang, Bowen$$b6
000877335 7001_ $$0P:(DE-HGF)0$$aWatanabe, Kenji$$b7
000877335 7001_ $$0P:(DE-HGF)0$$aTaniguchi, Takashi$$b8
000877335 7001_ $$0P:(DE-HGF)0$$aBartels, Ludwig$$b9
000877335 7001_ $$0P:(DE-HGF)0$$aShi, Jing$$b10
000877335 7001_ $$0P:(DE-Juel1)180322$$aStampfer, Christoph$$b11
000877335 7001_ $$0P:(DE-Juel1)178028$$aBeschoten, Bernd$$b12$$eCorresponding author$$ufzj
000877335 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b05138$$gVol. 20, no. 5, p. 3147 - 3154$$n5$$p3147 - 3154$$tNano letters$$v20$$x1530-6992$$y2020
000877335 8564_ $$uhttps://juser.fz-juelich.de/record/877335/files/acs.nanolett.9b05138-1.pdf
000877335 8564_ $$uhttps://juser.fz-juelich.de/record/877335/files/1911.11692.pdf$$yOpenAccess
000877335 8564_ $$uhttps://juser.fz-juelich.de/record/877335/files/acs.nanolett.9b05138-1.pdf?subformat=pdfa$$xpdfa
000877335 8564_ $$uhttps://juser.fz-juelich.de/record/877335/files/1911.11692.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877335 909CO $$ooai:juser.fz-juelich.de:877335$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000877335 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000877335 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000877335 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000877335 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000877335 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000877335 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180322$$aForschungszentrum Jülich$$b11$$kFZJ
000877335 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178028$$aForschungszentrum Jülich$$b12$$kFZJ
000877335 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000877335 9141_ $$y2020
000877335 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2018$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877335 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2018$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-06
000877335 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-06
000877335 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000877335 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000877335 980__ $$ajournal
000877335 980__ $$aVDB
000877335 980__ $$aUNRESTRICTED
000877335 980__ $$aI:(DE-Juel1)PGI-9-20110106
000877335 980__ $$aI:(DE-82)080009_20140620
000877335 9801_ $$aFullTexts