001     877335
005     20210130005016.0
024 7 _ |a 10.1021/acs.nanolett.9b05138
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/24935
|2 Handle
024 7 _ |a pmid:32202802
|2 pmid
024 7 _ |a WOS:000535255300027
|2 WOS
024 7 _ |a altmetric:71232191
|2 altmetric
037 _ _ |a FZJ-2020-02148
082 _ _ |a 660
100 1 _ |a Ersfeld, Manfred
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Unveiling Valley Lifetimes of Free Charge Carriers in Monolayer WSe 2
260 _ _ |a Washington, DC
|c 2020
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591096788_5362
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on nanosecond-long, gate-dependent valley lifetimes of free charge carriers in monolayer WSe2, unambiguously identified by the combination of time-resolved Kerr rotation and electrical transport measurements. While the valley polarization increases when tuning the Fermi level into the conduction or valence band, there is a strong decrease of the respective valley lifetime consistent with both electron-phonon and spin-orbit scattering. The longest lifetimes are seen for spin-polarized bound excitons in the band gap region. We explain our findings via two distinct, Fermi-level-dependent scattering channels of optically excited, valley-polarized bright trions either via dark or bound states. By electrostatic gating we demonstrate that the transition-metal dichalcogenide WSe2 can be tuned to be either an ideal host for long-lived localized spin states or allow for nanosecond valley lifetimes of free charge carriers (>10 ns).
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Volmer, Frank
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rathmann, Lars
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kotewitz, Luca
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Heithoff, Maximilian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lohmann, Mark
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yang, Bowen
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Watanabe, Kenji
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Taniguchi, Takashi
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bartels, Ludwig
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Shi, Jing
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 11
700 1 _ |a Beschoten, Bernd
|0 P:(DE-Juel1)178028
|b 12
|e Corresponding author
|u fzj
773 _ _ |a 10.1021/acs.nanolett.9b05138
|g Vol. 20, no. 5, p. 3147 - 3154
|0 PERI:(DE-600)2048866-X
|n 5
|p 3147 - 3154
|t Nano letters
|v 20
|y 2020
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/877335/files/acs.nanolett.9b05138-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877335/files/1911.11692.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877335/files/acs.nanolett.9b05138-1.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877335/files/1911.11692.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877335
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)180322
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)178028
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21