Hauptseite > Publikationsdatenbank > ODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations > print |
001 | 877336 | ||
005 | 20240313094935.0 | ||
024 | 7 | _ | |a 10.5281/ZENODO.3822082 |2 doi |
037 | _ | _ | |a FZJ-2020-02149 |
100 | 1 | _ | |a Linssen, Charl |0 P:(DE-Juel1)176305 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a ODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations |
260 | _ | _ | |c 2020 |
336 | 7 | _ | |a Software |2 DCMI |
336 | 7 | _ | |a Software |b sware |m sware |0 PUB:(DE-HGF)33 |s 1595507451_6840 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a MISC |2 BibTeX |
336 | 7 | _ | |a Computer Program |0 6 |2 EndNote |
336 | 7 | _ | |a OTHER |2 ORCID |
336 | 7 | _ | |a Software |2 DataCite |
520 | _ | _ | |a Choosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix.In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 1 |
536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |f SMHB |x 2 |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 3 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 4 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 5 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 6 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Morrison, Abigail |0 P:(DE-Juel1)151166 |b 1 |u fzj |
700 | 1 | _ | |a Eppler, Jochen Martin |0 P:(DE-Juel1)142538 |b 2 |u fzj |
773 | _ | _ | |a 10.5281/ZENODO.3822082 |
856 | 4 | _ | |u https://zenodo.org/record/3822082 |
909 | C | O | |o oai:juser.fz-juelich.de:877336 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176305 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)151166 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)142538 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2020 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 3 |
980 | _ | _ | |a sware |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|