001     877339
005     20240313103120.0
024 7 _ |a 10.1101/2020.05.28.121095
|2 doi
024 7 _ |a 2128/25176
|2 Handle
024 7 _ |a altmetric:83092441
|2 altmetric
037 _ _ |a FZJ-2020-02151
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Dąbrowska, Paulina Anna
|0 P:(DE-Juel1)171408
|b 0
|e Corresponding author
245 _ _ |a On the complexity of resting state spiking activity in monkey motor cortex
260 _ _ |a Cold Spring Harbor
|c 2020
|b Cold Spring Harbor Laboratory, NY
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1593440224_4406
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
500 _ _ |a bioRxiv beta
520 _ _ |a Resting state has been established as a classical paradigm of brain activity studies, mostly based on large scale measurements such as fMRI or M/EEG. This term typically refers to a behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks claim to mimic such idle states, but compare their results to task- or stimulus-driven experiments, which might lead to misleading conclusions. To provide a proper basis for comparing physiological and simulated network dynamics, we characterize simultaneously recorded single neurons' spiking activity in monkey motor cortex and show the differences from spontaneous and task-induced movement conditions. The resting state shows a higher dimensionality, reduced firing rates and less balance between population level excitation and inhibition than behavior-related states. Additionally, our results stress the importance of distinguishing between rest with eyes open and closed.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|x 0
|f POF III
536 _ _ |a DFG project 238707842 - Kausative Mechanismen mesoskopischer Aktivitätsmuster in der auditorischen Kategorien-Diskrimination (238707842)
|0 G:(GEPRIS)238707842
|c 238707842
|x 1
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|x 2
|f H2020-Adhoc-2014-20
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|x 3
|f H2020-SGA-FETFLAG-HBP-2017
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Others
|0 V:(DE-MLZ)SciArea-250
|2 V:(DE-HGF)
|x 0
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 1
700 1 _ |a Voges, Nicole
|0 P:(DE-Juel1)168479
|b 1
700 1 _ |a von Papen, Michael
|0 P:(DE-Juel1)171972
|b 2
700 1 _ |a Ito, Junji
|0 P:(DE-Juel1)144576
|b 3
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 4
700 1 _ |a Riehle, Alexa
|0 P:(DE-Juel1)172858
|b 5
|u fzj
700 1 _ |a Brochier, Thomas
|0 0000-0001-6948-1234
|b 6
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 7
|u fzj
773 _ _ |a 10.1101/2020.05.28.121095
|0 PERI:(DE-600)2766415-6
|y 2020
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/877339/files/Resting_state_dynamics_bioRxiv.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/877339/files/Resting_state_dynamics_bioRxiv.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877339
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171408
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)171408
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168479
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 1
|6 P:(DE-Juel1)168479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171972
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156459
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 5
|6 P:(DE-Juel1)172858
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172858
910 1 _ |a Aix-Marseille Université
|0 I:(DE-588b)1043886400
|k AMU
|b 6
|6 0000-0001-6948-1234
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144168
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 7
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21