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Abstract Resting state has been established as a classical paradigm of brain activity studies,11

mostly based on large scale measurements such as fMRI or M/EEG. This term typically refers to a12

behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal13

activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks14

claim to mimic such idle states, but compare their results to task- or stimulus-driven experiments,15

which might lead to misleading conclusions. To provide a proper basis for comparing physiological16

and simulated network dynamics, we characterize simultaneously recorded single neurons’ spiking17

activity in monkey motor cortex and show the differences from spontaneous and task-induced18

movement conditions. The resting state shows a higher dimensionality, reduced firing rates and19

less balance between population level excitation and inhibition than behavior-related states.20

Additionally, our results stress the importance of distinguishing between rest with eyes open and21

closed.22

23

Introduction24

The resting state in behavioral studies is defined operationally as an experimental condition without25

imposed stimuli or other behaviorally salient events (Raichle, 2009; Snyder and Raichle, 2012). It has26

become a classical paradigm for experiments involving large scale measurements of brain activity27

like fMRI and M/EEG (Vincent et al., 2007; Raichle, 2009; Deco et al., 2011; Snyder and Raichle,28

2012; Baker et al., 2014). A major conclusion of these studies is that spontaneous brain activity in29

human and monkey can be characterized as a sequence of re-occuring spatio-temporal patterns of30

activation or deactivation resembling task-evoked activity, but present during rest (Vincent et al.,31

2007; Fox and Raichle, 2007; van den Heuvel and Hulshoff Pol, 2010) Defined on the whole-brain32

level, they are shaped by anatomical connectivity and derived from functional connectivity (Honey33

et al., 2009; Bastos and Schoffelen, 2016).34

While the exact link between the fMRI signal and neuronal activity is a matter of ongoing research35

(Logothetis and Wandell, 2004; Ekstrom, 2010), resting state studies have also been carried out on36

the level of single brain areas. Here, the spontaneous activity is often referred to as ongoing, intrinsic,37

baseline, or resting state activity, and can be studied by means of, for example, optical imaging38

combined with single electrode recordings (Arieli et al., 1996; Tsodyks et al., 1999; Kenet et al.,39

2003). Such data, collected under anesthesia, were used to investigate the variability in evoked40
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cortical responses (Arieli et al., 1996), the switching of cortical states (Tsodyks et al., 1999), and the41

link of these cortical states to the underlying functional architecture (Kenet et al., 2003). In our42

study, we aim to characterize the resting state on yet another spatio-temporal scale, namely on the43

scale of simultaneous single unit (SU) spiking activity recorded in macaque monkey (pre-)motor cortex.44

Spiking activity in monkey motor cortex has been studied extensively during arm movements,45

which gives rise to an increased average neuronal firing compared to wait (Nawrot et al., 2008;46

Rickert et al., 2009; Riehle et al., 2018). On a single unit level, direction-specific neuronal sub-47

populations encode the movement direction by firing rate modulations (Georgopoulos et al., 1986;48

Rickert et al., 2009). These and other studies also investigated the spike time irregularity and the49

spike count variability in monkey motor cortex during various behavioral epochs: Movements have50

been related to a lower spike count variability across trials (Rickert et al., 2009; Churchland et al.,51

2010; Riehle et al., 2018) and to a higher spike time irregularity (Davies et al., 2006; Riehle et al.,52

2018) compared to wait or preparatory behavior without movements. However, the resting state53

we analyze in this study is conceptually distinct from waiting or preparatory epochs: there is no54

task to prepare for and no signal to be anticipated. It is a state without any particular expectations55

or dispositions.56

Studies on spiking neural network models aim to mimic brain dynamics down to the level of57

individual neuron activities. Bottom-up modeling approaches thereby derive the structure and58

parameters of network models from anatomy and electrophysiology, trying to reproduce and59

understand experimentally observed activity features of increasing complexity. For simplicity and60

due to missing knowledge of inputs to local circuits, such studies often focus on the idle state61

and intrinsically generated dynamics of networks (van Vreeswijk and Sompolinsky, 1996, 1998;62

Brunel, 2000; Kumar et al., 2008; Voges and Perrinet, 2010; Potjans and Diesmann, 2014; Dahmen63

et al., 2019). This approach provides the prerequisite to study network dynamics and function64

in the presence of external stimuli and finally its relation to behavior. There are computational65

frameworks that can be used for a quantitative comparison or, ultimately, validation of such spiking66

neural network models against experiments (Gutzen et al., 2018), but data on single unit activity67

in resting-state condition is still lacking. As a consequence, network models are often compared68

to data collected in behavioral experiments, where tasks or stimuli lead to transient deviations69

from the resting-state statistics such as e.g. the average firing rates (Georgopoulos et al., 1986;70

Riehle et al., 1997; Kaufman et al., 2013; Riehle et al., 2018). Recently developed biophysical71

forward modeling schemes (Einevoll et al., 2013) in combination with large-scale network models72

(Potjans and Diesmann, 2014; Schmidt et al., 2018a,b;Markram et al., 2015) in principle provide a73

possible way to employ existing resting-state fMRI and M/EEG data to benchmark spiking network74

models. However, the complexity of the dynamics on the level of individual neurons is lost in these75

mesoscopic and macroscopic measures of activity. Therefore, to provide a suitable reference for76

the validation of spiking neural network models on the single neuron (microscopic) level, we here77

present an analysis of massively parallel spiking activity in macaque monkeys at rest.78

The aim of this study is a detailed characterization of the spiking activity at rest compared to79

task-induced and spontaneous movements. To this end, we recorded the ongoing activity with a80

4x4mm2 100 electrode Utah Array (Blackrock Microsystems, Salt Lake City, UT, USA) situated in the81

hand-movement area of macaque (pre-)motor cortex. We performed two types of experiments:82

1. During resting state experiments (REST), we recorded the neuronal activity of two monkeys83

seated in a chair with no task or stimulation. The spontaneous behavior was then classified84

into periods of (sleepy) rest and movements.85

2. Reach-to-grasp experiments (R2G) (Riehle et al., 2013; Torre et al., 2016; Brochier et al., 2018;86

Riehle et al., 2018) provide well-defined periods of task-related movements and task-imposed87

waiting. The latter behavior is similar to rest but contains a mental preparation task.88

We ask if a distinction between spontaneous (resting and non-resting) and task-evoked (reach-to-89

grasp) neuronal dynamics is expressed on the level of single unit (SU) and network spiking activity.90
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More specifically, we also ask if certain features of the neuronal firing during pure resting periods91

allow for a differentiation from spontaneous and task-induced movements, preparatory periods,92

or sleepiness. Contrary to this expectation, the motor system may show invariants, i.e., statistical93

properties of the neuronal spiking that do not change with respect to different behavioral epochs.94

While such comparisons have been performed on the level of local field potential (LFP) recordings,95

e.g., the investigation of behavior-related frequency modulations (Engel and Fries, 2010; Kilavik96

et al., 2013), to our knowledge this is the first study to perform such comparison on the level of97

spiking activity.98

In the following, we first detail howwe performed the segmentation of REST recordings according99

to behavior, and then explored the activity of single neurons in different behavioral states. To100

investigate if there are comparable neuronal activity states in task-related data, we performed101

similar analyses for the R2G data. Apart from the SU dynamics, we also focused on network102

properties of the neuronal activities: We evaluated pairwise covariances, dimensionality of rate103

activities, and excitatory-inhibitory balance in the different behavioral states of both REST and R2G.104

The comparison to the R2G data enabled us to identify systematic network state changes which are105

less pronounced in REST.106

Results107

We aim to determine in what regards spiking activity during rest is distinct from other behavioral108

states like spontaneous movements, sleepiness, movement preparation, or task-induced grasping.109

To do so, we first describe the behavioral segmentation of the REST data based on videos of the110

monkeys during the experiment, resulting in a sequence of defined behavioral states in REST. The111

segmentation of R2G was chosen as in previous studies on these data (Riehle et al., 2018). Then,112

we show that the behavioral segmentation is meaningful in terms of neuronal activity on two113

different scales: On the mesoscopic scale, which incorporates the collective behavior of neurons,114

we show that the LFP spectra differ across states. On the microscopic scale, we show that SU firing115

is correlated to the monkeys’ behavior, and examine the relation between behavior, spiking activity116

dimensionality and excitatory-inhibitory balance.117

Behavioral segmentation118

Based on video recordings, each REST session (two per monkey) was segmented according to119

the monkey’s behavior, (cf. Materials and Methods: Behavioral Segmentation). Three states were120

considered: resting state (RS)—no movements and eyes open; sleepy resting state (RSS)—no121

movements and eyes (half-)closed; spontaneous movements (M)—movements of the whole body122

and/or limbs (Fig. 1A). For R2G recordings, two behavioral states were defined with respect to trial123

events. For these states, interval lengths of 500ms were used: the first part of the preparatory124

period (PP)—500ms after the first cue, when the monkey waits immobile for the GO; and a task-125

related movement period (TM)—an interval containing movement onset and grasping (Fig. 1B).126

The visual segmentation is substantiated by comparison of the LFP spectra in the above defined127

states (Fig. 1C). The relationship between LFP and behavior has been shown in several studies, e.g.128

Pfurtscheller and Aranibar (1979); Fontanini and Katz (2008); Engel and Fries (2010); Takahashi129

et al. (2011); Kilavik et al. (2013). Beta oscillations (≈13 to 30Hz) have been linked to states of130

general arousal, movement preparation, or postural maintenance (Baker et al., 1999; Kilavik et al.,131

2012) and are typically suppressed during active movement (Pfurtscheller and Aranibar, 1979).132

In our data, RS and PP show peaks in the range from ≈10 to ≈30 Hz (alpha/beta range), the133

peak in PP occurs for a higher frequency than in RS. In both monkeys, M and TM contain more134

power compared to other states in frequencies above ≈50Hz (gamma), while beta power is reduced.135

However, the spectrum during RSS differs between monkeys. In monkey E, RSS seems to be a136

distinct physiological state: it shows strong slow oscillations, as to be expected (Gervasoni et al.,137

2004; Fontanini and Katz, 2008) for a sleepy version of RS. In monkey N, however, the spectra138

during RSS are more similar to RS, but still with more power in the lower frequency bands.139
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Table 1. List of all considered experimental recordings. Session names (first column) starting with "e" refer to

monkey E, and with "i" to monkey N. Throughout the manuscript the REST sessions are referred to as E1, E2, N1

and N2. Each R2G trial yields one PP and one TM period, equally long (0.5 s each).

REST session #slices: 3 s (0.5 s) #SUs (#bs, #ns)

RSS RS M

e170103-002 (E1) 40 (232) 196 (1058) 43 (200) 115 (56, 50)

e170131-002 (E2) 0 189 (970) 67 (308) 133 (67, 56)

i140701-004 (N1) 20 (114) 151 (840) 58 (312) 130 (76, 45)

i140615-002 (N2) 45 (258) 156 (836) 36 (180) 154 (78, 62)

R2G session #trials #SUs (#bs, #ns)

e161212-002 108 131 ( 50, 56)

e161215-001 102 92 ( 41, 37)

e161220-001 114 98 ( 45, 33)

e161222-002 102 118 ( 57, 41)

e170105-002 101 115 ( 60, 45)

e170106-001 100 116 ( 57, 43)

i140613-001 93 138 ( 71, 56)

i140616-001 130 154 ( 75, 61)

i140617-001 129 154 ( 83, 59)

i140703-001 142 142 ( 84, 46)

i140704-001 141 124 ( 70, 43)

Table 1 lists all single recording sessions for both REST and R2G experiments. It provides140

information about the number of SUs (separated into putative excitatory / broad spiking (bs) and141

putative inhibitory / narrow spiking (ns)) and the number of data slices (3 or 0.5 s long in REST) or142

trials (R2G), in the different behavioral states. Thus in total we have 2 sessions of 15-20 min from143

each monkey during REST, and 6/5 sessions (of similar durations) of monkey E/N during R2G. This144

results in 627 R2G trials of monkey E and 635 trials of monkey N. These were compared to the145

following numbers of data segments of 0.5 s during REST: 232, 2028 and 508 segments of RSS, RS146

and M, respectively, for monkey E and 372, 1676 and 492 segments for monkey N. For details on147

cutting the data see Materials and Methods: Behavioral Segmentation.148

Relation between neuronal firing and behavior149

A prerequisite for the following analyses is to formalize a relationship between neuronal spiking150

activity and the behavioral states of a monkey. Therefore, we quantified the correlation between151

SU firing and behavior. This is by no means to be taken as a decoding approach, but rather as a152

substantiation for the approach taken above to differentiate between behavioral states in REST.153

Figure 2A shows the time-resolved firing rates (FR) of all recorded SUs in one REST session154

(N1) (Sec. Materials and Methods: Behavioral correlation). They change in time and are variable155

across SUs, which is true for all REST sessions. The firing rates range from 0 up to ≈100 spikes per156

second. Some SUs exhibit a consistent firing (not visible by eye), e.g., unit 4 in Fig. 2A with a small157

absolute standard deviation, FR= 1.23 ± 1.16, and similarly unit 127 (relative standard deviation158

FR= 25.29 ± 6.46). The firing of other SUs changes considerably over time, e.g., unit 126 with a159

large absolute standard deviation FR= 20.08 ± 12.15, and similarly unit 17 with a relative standard160

deviation FR= 1.74 ± 3.53.161

To examine this variability with respect to the behavior of the monkey, we defined a behavioral162

state vector (cf. bottom panel of Fig. 2A). Its entries represent the behavioral states: the value is set163

to +1 if there are movements (M) and -1 if the monkey is at rest (RS), and for the following analysis164
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all other states are not taken into account. The bottom row of Fig. 2B shows the values of the165

behavioral correlation (BC, see Sec. Materials and Methods: Behavioral correlation) between the166

state vector and the firing rate (in 1 s bins) of each of the SUs, ordered from minimum to maximum.167

The panel above shows the FR of the corresponding SUs in identical order, averaged over the168

whole recording period (bars), only over RS periods (green markers) and only over M periods (pink169

markers). Most SUs increase their firing rate during M (mostly on the right side of the panel), many170

of them significantly (BC > 0.17, p < 0.001). A much smaller set of SUs increases the firing rate during171

RS (BC < −0.17), seen mostly on the left side of the panel. This asymmetry between the two states172

is reflected by the positive average BC in all 4 REST sessions (Tab. 2 col. 3). The second column173

of Tab. 2 lists the percentage of SUs with significant BC, for all sessions (see Sec. Materials and174

Methods: Behavioral correlation for the derivation of the BC significance). They range from 40.8175

to 66.9%, however, neither the sign nor the amount of the behavioral correlation can be reliably176

predicted from the average FR: Both SUs with very high or very low mean FR show negative, positive177

and close to zero BC values. This is also indicated by the insignificant correlation between FR and178

BC (Tab. 2 col. 4): �BC,FR. Yet, the consistently negative �BC,FR values suggest that SUs with smaller179

firing rates tend to be more sensitive to behaviour that highly active ones (the lower the mean FR,180

the higher the mean BC).181

In order to include the RSS state (in addition to M & RS) in the correlation of neuronal activity and182

behavioral states, we performed a Kruskal-Wallis test (KW) per SU, which provides information about183

the significance, but no quantification of the strength of the correlation. The obtained percentage184

of significantly correlated SUs (p < 0.001) ranges from 55% to 77% in monkey E and from 44% to185

48% in monkey N (last column of Tab. 2). Thus, we find a clear inter-relation of the behavioral state186

and the neuronal activity.187

Since firing rates seem to be not indicative of the behavioral state, we further differentiated the188

data into putative excitatory and inhibitory neurons (Sec. Materials and Methods: Pre-processing).189

Fig. 2C shows the distribution of BC values obtained in session N1 for all SUs (green shaded area),190

and for SU separated into putative excitatory / broad spiking SUs (bs) and putative inhibitory /191

narrow spiking (ns) SUs (blue and red lines, respectively). In this session we find a significant192

difference between the ns and the bs BC distribution. However, this could not be substantiated in193

the data from other recording sessions, indicating that the neuron type does not determine the194

strength of correlation with behavior. Still, firing of putative inhibitory as compared to excitatory195

neurons seems to be more related to behavioral states. This is indicated by higher percentages of196

significantly correlated ns than bs SUs (cf. Tab. 2 col. 2&5), particularly in monkey N, see also the197

higher mean BC of ns in monkey N (cf. Tab. 2 col. 3).198

In order to include also the RSS state (in addition to M & RS) in the correlation of neuronal199

activity and behavioral states, we performed a Kruskal-Wallis test (KW) per SU, which provides200

information about the significance, but no quantification of the strength of the correlation. The201

obtained percentage of significantly correlated SUs (p < 0.001) ranges from 55% to 77% in monkey E202

and from 44% to 48% in monkey N (last column of Tab. 2). Thus, we find a clear inter-relation of the203

behavioral state and the neuronal activity of the observed population.204

To examine in more detail behavior-related modulations of average FR, we performed a set of205

pairwise comparisons between behavioral states per SU (using 3 s slices, see Sec. Materials and206

Methods: Behavioral correlation). Table 3 summarizes the results by listing the percentages of SUs207

that significantly change their FR with respect to behavior. We observe that ≈34 to 67% of the SUs208

show significantly higher FR during M as compared to RS, but still, 5 to 11% of SUs show significantly209

higher FR during RS (second and fifth column in Tab.3). Correspondingly, the percentages for RSS210

versus M show a similar tendency (≈25 to 48% and 2 to 8%, respectively, col. 3&6). This confirms211

the results obtained so far, i.e., that there are mostly lower firing rates during rest (RS and RSS) than212

during movement (M).213

The properties of M in relation to RS are consistent in the two monkeys, but the RSS state214

differs between them. Only 3 to 4% of SUs show significantly lower firing in RS than in RSS in215
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Table 3. Pairwise comparisons of SU firing rates in different states. Percentage of SUs that exhibit significantly

lower (first three columns) or higher (last three columns) firing rates in the first of the two states indicated in the

column header (RS vs M, RSS vs M, and RS vs RSS) for all REST sessions (in 3 s slices).

Session RS < M RSS < M RS < RSS RS > M RSS > M RS > RSS

E1 37.6 24.8 18.8 7.7 7.7 3.8

E2 67 11

N1 33.6 30.5 3.8 6.1 1.5 19.8

N2 42.9 48.1 2.6 4.5 1.9 30.5

monkey N, but in monkey E the percentage is ≈20% (Tab. 3 col. 4). Vice versa, only 3.8% of SUs show216

significantly higher firing in RS than in RSS in monkey E, while it is ≈20 to 30% in monkey N (last217

column). Moreover, the percentages of SUs showing lower firing during RS and RSS as compared218

to M (second and third column in Tab.3) are rather similar in monkey N. However, in monkey E219

only 25% of SUs show higher firing during M than during RSS while 38% of the SUs show a higher220

firing during M as compared to RS. Thus, in agreement with our observations of the LFP spectra221

(cf. Sec. Results: Behavioral segmentation), rest and sleepy rest in monkey E express rather different222

features while they are quite similar for monkey N.223

Above we show that the firing of approximately half of the SUs is significantly correlated to the224

behavior and that RS is, on average, associated with lower FRs than movements. However, the225

absolute value of the FR alone is not predictive of the response of a SU to different behavioral states.226

In the following section, we aim to investigate other aspects than mere SU spiking in different227

behavioral states.228

Further single unit firing properties and their relation to behavior229

Given the relation between behavior and SU firing rate modulations, we now ask if other features230

of SU activity can be directly linked to particular behavioral states. From now on, we include R2G231

data to additionally look for differences on the level of spontaneous versus task-related behaviors.232

The box plots in Fig. 3 and the values listed in Tab. 5 describe averaged firing rates (FR), local233

coefficients of variation (CV2) and the Fano factor (FF), calculated for 0.5 s time slices of all REST234

and R2G sessions, per SU and time slice (see Sec. Materials and Methods: Data analysis). The CV2235

characterizes the (ir-)regularity of neuronal firing across time. A value closer to zero (CV2⪅0.5)236

indicates regular spiking, Poissonian firing is characterized by CV2=1 (Shinomoto et al., 2003; Voges237

and Perrinet, 2010), and values higher than one indicate more irregular spiking. The FF describes238

the variability of SU spike counts across trials (R2G) or time slices (REST) (Nawrot et al., 2008;239

Nawrot, 2010; Riehle et al., 2018). It equals one for a Poisson process and decreases for more240

reliable spiking.241

Averaged across time slices (Fig. 3A), FR shows the highest median in movement states (M & TM),242

while it is lower in RS(S) and PP (the differences being mostly significant, see below). Inferred from243

CV2, the firing is less regular in REST as compared to R2G states, and slightly less regular during TM244

than during PP, both showing a larger spread of values than the REST states. These differences are245

minor compared to the differences in the spike count variability: R2G states exhibit a much smaller246

and less variable FF, i.e., a higher reliability. M and RSS show the highest spread of FF, i.e. highest247

SU variability. The RS state exhibits a medium mean and spread of FF values.248

Kruskal-Wallis tests on all 5 behavioral conditions yield highly significant differences between249

states for each measure (p ≪ 0.0001) for both monkeys. The results of all pairwise comparisons250

are listed in Tab. 4. For both monkeys, most differences are significant, though CV2 differentiates251

primarily between REST and R2G recordings, thus between spontaneous and task-related behaviors.252

Averaging across SUs (Fig. 3B), we examine the variability in time. Note that even though253

the number of RS time slices highly exceeds that of SUs (cf. Tab. 1), the observed spread of the254
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Table 5. Quantification of average firing rate (FR, top row), regularity in spiking (CV2, middle row), and spike

count variability (FF, bottom row). Given are mean values (averaged across time slices and SUs) and

corresponding standard deviations with respect to SUs. All values are obtained from 0.5 s slices, for different

behavioral states in REST (RSS, RS, M) and R2G (TM, PP), pooled across all recordings of the respective type.

Monkey RSS RS M TM PP

Firing rate FR [Hz]

E 6.60 ± 5.34 6.43 ± 5.74 8.79 ± 6.57 8.74 ± 9.69 5.65 ± 6.92

N 6.64 ± 4.66 7.81 ± 5.51 9.44 ± 6.32 14.34 ± 12.90 9.58 ± 7.74

Local coefficient of variation CV2

E 0.86 ± 0.16 0.83 ± 0.17 0.83 ± 0.15 0.78 ± 0.31 0.76 ± 0.36

N 0.83 ± 0.15 0.79 ± 0.15 0.80 ± 0.16 0.74 ± 0.24 0.69 ± 0.29

Fano factor FF

E 3.14 ± 1.53 2.06 ± 0.88 3.05 ± 1.72 1.32 ± 0.82 1.41 ± 0.64

N 2.31 ± 1.30 1.86 ± 1.07 2.29 ± 1.42 1.12 ± 0.64 1.21 ± 0.78

corresponding values is much smaller. This holds for all behavioral states. Since the variability255

across time slices (panel B) is much smaller than the variability across SUs (panel A), we later on256

averaged over time and considered only the variability with respect to SUs.257

In summary, we find high SU variability in most of the measures for most of the states and the258

observed differences between states are mostly significant. Resting periods are characterized by259

rather low firing rates as compared to movements in agreement with the results in Sec. Results: Re-260

lation between neuronal firing and behavior. The RS in particular shows a higher reliability (lower261

FF) than M and RSS, but all REST states show a clearly higher FF as compared to R2G states.262

Network firing properties263

We now turn towards the analysis of coordinated firing as opposed to single unit dynamics. Co-264

ordination between neurons can be measured at various time scales and quantified with various265

methods. We here consider spike-count covariances calculated for 3 s slices with a bin size of266

100ms, see Sec. Materials and Methods: Covariances and dimensionality. To this end, we first267

show the covariance (COV) distributions, averaged over slices of the REST data (Fig. 4A). While268

the average value during all REST behaviors is close to zero, the spread of the COV distributions269

differs between states, leading to highly significant differences (p ≪ 0.0001). In monkey E, the270

standard deviation of the covariances is considerably lower during RS (COVRS = 0.007 ± 0.033) than271

during RSS (COVRSS = 0.014 ± 0.069) and M (COVM = 0.033 ± 0.11). The same is true for monkey N:272

COVRS = 0.008 ± 0.028 compared to COVRSS = 0.017 ± 0.062 and COVM = 0.012 ± 0.062. Statistical273

comparison of the shape of the distributions with two-sample Kolmogorov-Smirnov tests reveals274

significant differences for all pairs in both monkeys. In summary, we find that neuronal firing is less275

correlated during rest as compared to movements and we again observe distinct RSS properties in276

the two monkeys.277

The differences in the COV distributions motivate a more detailed investigation of the coor-278

dination of all recorded neurons. Apart from mean and variance of the covariance distribution,279

another summarizing measure for the covariance structure has been established and discussed280

in the recent years: the participation ratio (PR) (Abbott et al., 2011; Mazzucato and La Camera,281

2016; Gao et al., 2017). The PR depends on all covariances in the network as it is derived from the282

eigenvalues of the covariance matrix using a principle component analysis. One can show that283

it depends on a combination of first and second order moments of auto- and cross-covariances284

(Mazzucato and La Camera, 2016). The physical interpretation of the PR is the dimensionality of285

the manifold spanned by the neuronal activity (see Sec. Materials and Methods: Covariances and286
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dimensionality). The higher the PR, the more eigenvectors (principle components) are needed to287

capture most of the variance of the dynamics. We performed an analysis for the REST and also for288

the R2G states (0.5 s slices were concatenated to 3 s slices). To make the PR of different experiments289

and recordings comparable, we normalized to the total number of SU obtained in each session.290

Figure 4B shows that the dimensionality varies over time (shown for monkey E during REST291

experiment). It changes with relation to behavior consistently across monkeys (as shown in Fig. 4C).292

This is true for all sessions (see also Tab. 6). The PR is highest during RS and PP and lowest during293

TM. The RSS state in both monkeys is clearly distinct from RS, its PR being more similar to the one294

obtained for M, as seen in the covariance distributions. The spread of the values is notably higher295

in REST than in R2G states, especially in monkey N.296

Kruskal-Wallis tests on all behavioral conditions yield highly significant differences (p ≪ 0.0001)297

for both monkeys. Pairwise comparisons yield mostly significant results except for RS vs PP, RSS vs298

M & TM and M vs TM in monkey E, as well as RS vs PP and RSS vs M in monkey N. These results hold299

for different bin sizes (shown in Sec. Materials and Methods: Covariances and dimensionality).300

The higher dimensionality of RS as compared to movement states and sleepy rest is a clear301

evidence for the complexity of this state. Moreover, the large difference between the PR of RS302

and RSS emphasizes the necessity to distinguish between rest with eyes open and closed. In the303

following, we will support this claim by analyzing the balance between putative excitatory and304

inhibitory population activity.305

Balance in population activity306

Population activities are the most straight forward and well studied low-dimensional projections307

of neuronal spiking data. Based on summed SU activities, they provide a global view on the308

network activity, disregarding single neuron-specific fluctuations. Due to the population-averaging,309

fluctuations on the population level are only determined by the average single-neuron covariances310

(Kriener et al., 2008) and are insensitive to the large variability across single neurons (Fig. 4A).311

The latter, in contrast, affects the participation ratio (Mazzucato and La Camera, 2016). Studying312

population-level coordination is therefore complementary to the analysis of dimensionality.313

Balance between excitation and inhibition is considered an attribute of a physiological network314

state in contrast to non-physiological states like, e.g., epilepsy (Zhang and Sun, 2011; Dehghani et al.,315

2016). Theoretical studies simulating cortical network dynamics mostly assume a balanced resting316

state (van Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000) and relate this to low average317

covariances between neurons (Renart et al., 2010; Tetzlaff et al., 2012). We here investigate the318

balance between putative excitatory (bs) and inhibitory (ns) population activities, first globally,319

similar to Dehghani et al. (2016), and then relating the balance levels to different behavioral states.320

Figure 5A shows the deviations from balance at different time scales (bin width) in session E1.321

White color indicates values close to zero, i.e., well-balanced activity, prevalent on smaller time322

scales. On time scales larger than ≈30ms, blue and red vertical stripes indicate transient deviations323

from perfect balance, i.e., an instantaneous dominance of excitation or inhibition, respectively. Such324

brief fluctuations were also observed during physiological activity by Dehghani et al. (2016).325

Fig. 5B presents a detailed view on one single time scale: the spike counts in 100ms bins of326

bs (blue) and ns (red) population and the difference between z-scored population spike counts in327

grey, representing a horizontal slice of Fig. 5A. Putative excitatory and inhibitory activities seem328

to fluctuate simultaneously, indicating balance, although the considered bin size is much larger329

than 30ms: Pronounced deviations from average spike counts can be seen in both populations,330

especially during RSS (dark green background color) and M (pink background). Considering the331

distributions of mean population spike counts (Appendix 1 Fig. 1), the standard deviations during M332

and RSS (9.56±2.49 and 7.81±2.75, respectively, ns population, session E1) are much higher than333

during RS (7.56±1.54). They are even larger (approximately factor 1.7) than expected from the334

larger means (approximately factor 1.1) which indicates distributions with more extreme values, i.e.,335

potential transient increases in the population spike count.336
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Table 6. Quantification and correlation of balance and dimensionality. Top rows: quantification of balance

between putative excitatory and inhibitory population activities (Δ(bs, ns) and �(bs,ns)). Middle row:

quantification of dimensionality as measured by the participation ratio (PR). Bottom row: Spearman rank

correlation between �(bs,ns) and PR; only p-values smaller than 0.05 are listed. All values were obtained from

3s slices, for different behavioral states in REST (RSS, RS, M) and R2G (TM, PP), pooled across all recordings of

the respective type.

Monkey RSS RS M TM PP

Putative excitatory/inhibitory prevalence Δ(bs, ns)

E −0.15 ± 0.86 0.00 ± 0.72 0.06 ± 0.85 −0.16 ± 1.04 0.16 ± 0.89

N −0.32 ± 1.00 0.09 ± 0.98 −0.06 ± 1.07 −0.28 ± 0.97 0.28 ± 0.68

Instantaneous balance �(bs,ns)

E 0.39 ± 0.22 0.2 ± 0.23 0.44 ± 0.29 0.26 ± 0.22 0.1 ± 0.21

N 0.36 ± 0.21 0.17 ± 0.24 0.16 ± 0.24 0.39 ± 0.24 0.08 ± 0.21

Participation ratio PR

E 0.100 ± 0.015 0.135 ± 0.019 0.111 ± 0.028 0.097 ± 0.015 0.152 ± 0.018

N 0.101 ± 0.018 0.130 ± 0.023 0.111 ± 0.023 0.071 ± 0.012 0.134 ± 0.010

Spearman rank correlation between �(bs,ns) and PR

E -0.31 -0.44 (p ≪ 0.001) -0.77 (p ≪ 0.001) 0.14 0.04

N -0.32 (p < 0.01) -0.21 (p < 0.001) -0.42 (p < 0.0001) -0.33 (p < 0.001) -0.08

means and standard deviations are listed in Tab. 6. For monkey E, the correlation between bs and360

ns activity is highest during M (�M = 0.47 ± 0.25), meaning that the balance was kept best during361

M state, closely followed by RSS (�RSS = 0.4 ± 0.2), see Fig. 6A, left. RS shows the lowest correlation362

(�RS = 0.26 ± 0.17), it is thus the least balanced state during REST. Pairwise comparisons confirm363

significantly different results for RS vs M, but not for RSS vs M & RS. In monkey N, RS and M exhibit364

nearly identical correlations (�RS = 0.23 ± 0.17, �M = 0.24 ± 0.17), see Fig. 6B, both are less balanced365

than RSS (�RSS = 0.38 ± 0.18) which is significantly more balanced than M.366

In the R2G data of both monkeys (right panels of Fig. 6A andB, respectively), PP (�PP = 0.18 ± 0.13367

for monkey E and �PP = 0.19 ± 0.14 for monkey N) is less balanced than TM (�TM = 0.3 ± 0.16 for368

monkey E and �TM = 0.38 ± 0.23 for monkey N); PP shows a significantly (p < 0.001) lower correlation369

between ns and bs activities. We thus conclude that behavioral states without movements (RS, PP)370

are less balanced than movement states when considering a timescale of 100ms.371

Participation ratio and balance measure different aspects of correlations in the underlying372

network. We now ask if and how these measures relate to each other. To this end, we analyzed the373

relation of PR and �(bs,ns) using scatter plots (Fig. 8C & D)—each 3s slice is represented by a single374

data point. The points are colored according to the behavioral state they are computed from; RSS,375

RS & M for REST, and TM & PP during R2G. For the REST data, we observe a negative correlation376

between PR and �(bs,ns) (see Tab.6): The higher the complexity, the lower the balance. Data points377

from different behavioral states overlap strongly and are thus not clearly separable. In contrast, TM378

and PP of the R2G data separate into two different clouds according to their PR, but there is no379

clear correlation to �(bs,ns).380

Discussion381

Experiments without any imposed stimuli or task have been investigated in numerous studies and382

referred to with multiple names: (a) ongoing, intrinsic or baseline activity of single brain areas383

(Arieli et al., 1996; Tsodyks et al., 1999), (b) spontaneous or resting state activity on the whole384

brain level (Vincent et al., 2007; Raichle, 2009; Deco et al., 2011), as well as (c) idle state of point-385
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neuron network simulations (Brunel, 2000; Potjans and Diesmann, 2014; Dahmen et al., 2019). Yet,386

a thorough characterization of spiking activity in the resting condition on the level of single neurons387

was still missing.388

Here, we investigate the properties of spiking activity in macaque motor cortex during five389

behavioral states: resting state (no movements, RS), sleepy rest (no movements with eyes closed,390

RSS), spontaneous movement (M), task-related movement (TM) and task-imposed waiting without391

movements (PP), with a particular focus on RS. Our main findings are: (a) we demonstrate a392

considerable correlation between neuronal firing and behavior, (b) we find that RS single unit393

activity is characterized by relatively low average firing rates and a high variability of interspike394

intervals and spike counts across data slices, (c) we identify a high dimensionality of the joint395

activity during RS, which is (d) correlated with a low level of balance between putative excitatory396

and inhibitory population spiking.397

Single unit activity and LFP during different behaviors398

Many studies investigate the link between neuronal activity in the motor cortex and behavior using399

LFP data (e.g. Pfurtscheller and Aranibar (1979); Fontanini and Katz (2008); Engel and Fries (2010);400

Kilavik et al. (2013)). Low frequency oscillations (<15Hz) are often linked to sleep (Gervasoni et al.,401

2004; Fontanini and Katz, 2008), beta oscillations (≈13-30Hz) typically appear during movement402

preparation or postural maintenance (Baker et al., 1999; Kilavik et al., 2012), while faster oscilla-403

tions mostly reflect attention and neuronal processing during movements (Fontanini and Katz,404

2008; Liu and Newsome, 2006). Our visual classification of the behavior is in good agreement with405

the LFP characteristics shown in the above studies.406

Firstly, all states without movements (RSS, RS & PP) show pronounced beta oscillations which407

are shifted towards higher frequencies during task-imposed rest (PP) compared to spontaneous408

rest (RS). Secondly, both spontaneous and task-related movements (M & TM) show stronger fast409

oscillations than non-movement states. The spectra obtained during RSS (eyes closed) indicate410

distinct physiological states in the two monkeys: the peak frequency during RSS of monkey E occurs411

at a much lower frequency compared to monkey N. This suggests that closing the eyes indicates412

drowsiness in monkey E but not necessarily in monkey N.413

Furthermore, in agreement with previous studies on behaving monkeys (Nawrot et al., 2008;414

Nawrot, 2010; Rickert et al., 2009; Churchland et al., 2010; Riehle et al., 2018), we find that the415

spiking activity is highly variable across SUs, and that the average firing rate is increased during416

movements as compared to waiting for the cue at rest. In REST data, in ≈50% of all SUs, we find417

a significant correlation between SU firing and the monkey’s behavior. This indicates that the418

analysis of spiking activity is another valid approach next to LFP and large scale recordings to419

investigate behavioral states, including resting state. Analogously to activations and deactivations420

of specific brain areas reported in fMRI studies (Biswal et al., 1995; Raichle, 2009; Deco et al., 2011),421

we observe systematic in- and decreases in firing rates in numerous SUs. Also in agreement with422

Nawrot et al. (2008); Nawrot (2010); Rickert et al. (2009); Churchland et al. (2010); Riehle et al.423

(2018), we find a (slightly) lower spike count variability during task related movements (TM) than424

during movement preparation (PP) and vice versa for the spike time irregularity1.425

A new finding of our study is a pronounced difference in variability between REST and R2G426

states, i.e., between spontaneous and task-related behavior. All REST states show a significantly427

higher spike count variability and a higher firing irregularity than the R2G states. These differences428

are probably due to the behavioral constraints present in the R2G but not in the REST experiments.429

During R2G task, the monkey received visual input to control periods of waiting or arm movements,430

resulting in well-defined behavioral states and partially constrained mental states with a more431

regular and reliable firing. In contrast, during REST experiments, the monkey itself decided what to432

do (e.g. movement preparation or onset), resulting in a less well-defined behavior and its timing.433

1Our results are less significant than those presented in Riehle et al. (2018); we analyze only a subset of the R2G data and

use partially different methods.
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The above findings are consistent for the two monkeys, but there are differences concerning434

the sleepy resting state: For monkey E, firing rates during RSS are higher than during RS, thus closer435

to the values measured during M, while this is not the case for monkey N. Thus, similar to what436

we find for the LFP spectra, the distinction between RS and RSS (eyes open vs eyes closed) is more437

pronounced in monkey E than in monkey N.438

Network activity439

During all behavioral states, the network activity of groups of neurons in the motor cortex is440

characterized by a dimensionality much lower than the maximal possible dimension, i.e., the total441

number of recorded single neurons. Task-related movements show the lowest dimensionality,442

expressed by a small normalized participation ratio, while non-movement states show a higher443

dimensionality. Accordingly, neuronal firing during rest is less coordinated than during other states,444

as indicated already by the narrower covariance distribution centered at zero. These findings agree445

well with Mazzucato and La Camera (2016); Gao et al. (2017) who compare stimulus-evoked and446

ongoing neuronal activity, assuming M and TM to represent the evoked activity, and RS and PP the447

ongoing activity. The low normalized participation ratio of less than 0.1 during TM (Figure 4) shows448

that the neural state space dynamics of the reach-to-grasp movement can be reconstructed from449

only a few principal components. Given the number of observed SUs (see Table 1), this corresponds450

to a neural state space dimensionality of approximately 7-13. In contrast, the ongoing activity451

during RS and PP is of significantly higher dimensionality (≈12-17 and ≈12-22, respectively) and452

thus more complex.453

In accordance with Csicsvari et al. (1999); Peyrache et al. (2012); Dehghani et al. (2016), we454

also find that putative excitatory and inhibitory population spiking are primarily well balanced.455

However, our detailed time-resolved analysis, i.e., calculating the balance in 100ms bins, uncovers456

the following particularities. During R2G experiments, the activity alternates between excitation-457

dominated movement preparation (PP) and inhibition-dominated movement execution (TM). During458

non-movement states (PP and RS), we find a reduced correlation between putative excitation459

and inhibition, i.e., a reduced instantaneous balance of non-movement states. In addition, the460

instantaneous balance is anti-correlated to the dimensionality, particularly strongly in REST.461

We suspect that the relatively high instantaneous balance during movements and sleepy rest462

is partially an effect of an enhanced number of transient changes in population spiking in these463

states as compared to the other states (Fig. 5B). A prominent increase in firing as observed during464

movements is an unambiguous type of activity change and is thus easy to capture by correlation465

measures. Such transient increases correlated in time between two neuronal populations could466

result from the recurrent coupling between excitatory and inhibitory neurons (see Appendix 1). In467

addition to the transients in population activity, we find hints of a prevalence of non-stationarities468

(e.g. transients) in the SU firing during movements and sleepiness, but not during rest (Appendix 1469

Fig. 2). Strong transient comodulations of spiking activities amplify correlations between neurons,470

which in turn decrease the dimensionality of network activity. Therefore, transient changes in471

firing rates might also be partially responsible for the reduced dimensionality during task-related472

movements.473

Influence of pre-processing and critical assumptions474

Specificities of extracellular recordings and the following pre-processing steps impose particular475

biases on the resulting statistics and their interpretation. Firstly, the spike sorting procedure,476

necessary to identify single cells recorded on the same electrode, is well-known to be problematic477

(Lewicki, 1998; Quian Quiroga, 2012). Additional limitations on minimal SNR and firing rate of a478

sorted unit to be considered for statistical evaluation contributes to the undersampling of sparsely479

firing neurons and thus biases results towards highly active neurons. This is often referred to as the480

problem of "dark matter" of the brain (Shoham et al., 2006).481

Secondly, the separation between putative excitatory and inhibitory neurons based on the widths482

17 of 34



Manuscript submitted to eLife

of their spike waveforms is also known to have several limitations (Bartho et al., 2004; Kaufman483

et al., 2010, 2013; Peyrache et al., 2012;Dehghani et al., 2016; Peyrache and Destexhe, 2019). Some484

pyramidal neurons, in particular when recorded close to the axon, exhibit narrow waveforms. Still,485

it was shown that over 10% of M1 interneurons have intermediate or broad waveforms (Kaufman486

et al., 2010; Vigneswaran et al., 2011; Kaufman et al., 2013). When discussing the differences487

between the two populations, it should be kept in mind that not all narrow-spiking units are488

inhibitory and only a part (majority) of broad-spiking SUs are excitatory (Peyrache and Destexhe,489

2019). Nevertheless, our separation yields higher average firing rates for putative inhibitory neurons490

which agrees well with what is known from the literature (Peyrache et al., 2012; Dehghani et al.,491

2016; Kaufman et al., 2010).492

Thirdly, our study relies on the behavioral segmentation of REST recordings which is highly493

subjective and has rather poor temporal resolution (∼1 s) in comparison to the recorded neuronal494

activity (∼1ms). Nevertheless, our behavioral classification seems to be accurate in terms of495

separating sets of dissimilar neurophysiological network states, as reflected by differences in state-496

resolved LFP spectra, see above. Still, our definitions of the behavioral states are based on visual497

inspection and may not be as precise. For example, the identification of "whole body and limb498

movements" in the video recording does not account for the fact that, due to the exact placement of499

the Utah array, our recordings are particularly sensitive to contra-lateral arm movements. Likewise,500

the RS classification is simply based on the exclusion of movements with the additional criterion501

of "eyes open". Compared to the very precise behavioral classification in R2G recordings2, the502

behavioral segmentation of REST recordings is vague and allows for a much broader range of actual503

behaviors.504

Finally, reliable covariance estimation necessitates very long data slices (Cohen and Kohn, 2011).505

To satisfy this requirement, in R2G data we had to concatenate slices from 6 consecutive trials506

into 3 s slices for the analysis of covariance and participation ratio. Thus, a single PR value results507

from averaging over six independent recording periods in contrast to the continuous REST data.508

However, this approach can be justified by our observation of a low inter-trial variability obtained509

for 0.5 s slices of the R2G data.510

Towards experimental data for spiking model validation511

Modeling studies focusing on spiking-neuron networks often claim to model an "idle" state, i.e.512

without any relation to functional aspects, characterized by sparse asynchronous irregular spiking513

and balanced input statistics (van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; van514

Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Kumar et al., 2008; Voges and Perrinet, 2010, 2012;515

Potjans and Diesmann, 2014). To isolate the ongoing and recurrently generated activity, many of516

these studies consider stationary states without any transient network activation due to external517

inputs. In this case single-neuron and population firing rates fluctuate around some mean activity.518

However, data collected in behavioral experiments often contain transient firing rate fluctuations519

on the level of both single units and whole populations. For motor cortex recordings, such firing520

rate changes typically occur during movements, which has been shown here and in many other521

studies (Nawrot et al., 2008; Rickert et al., 2009; Churchland et al., 2010; Riehle et al., 2013, 2018).522

We find that this disagreement can (mostly) be avoided by considering resting periods (RS) in REST523

recordings only. Using non-movement epochs (PP) during behavioral tasks yields results that are524

more similar to RS in terms of network firing properties, but the SU variability is still different525

(higher for CV2, and lower for FF). A comparison to inappropriate data sets could lead to erroneous526

conclusions on model parameters and the mechanisms that shape the network dynamics. Hence,527

network models that claim to mimic an idle state in terms of SU and network activity should ideally528

be validated against resting state data.529

2For example, PP is defined as 500ms after CUO-OFF when the monkey is forbidden to move, and constraining the analyzed

data to only successful trials ensures that the monkey was focused on the upcoming cue to perform the task.
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Balance and correlations530

Another typical claim of network simulations is the assumption of a balanced state, see above.531

The modeling literature discusses different types of balance (Deneve and Machens, 2016). Many532

studies assume a cancellation of excitation and inhibition in the input to neurons based on a balance533

between the strength and number of excitatory and inhibitory afferent connections (Poil et al., 2012).534

Perfect balance in this context corresponds to a critical point, where network dynamics exhibits535

avalanche-like behavior (Beggs and Plenz, 2003). This static notion of balance purely relies on the536

network structure. In contrast, other studies describe a more or less tight "dynamical balance"537

(van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; van Vreeswijk and Sompolinsky,538

1998; Brunel, 2000), where excitatory and inhibitory inputs cancel each other at each point in time539

(Renart et al., 2010). The latter cancellation is caused by excess inhibitory feedback (Tetzlaff et al.,540

2012) and, in excitatory-inhibitory networks, is accompanied by correlations between excitatory541

and inhibitory spiking (Renart et al., 2010). These correlations can be quantified on the level of542

neuronal output. Therefore, we here study balance based on the correlation between population543

activities.544

Our observation of a reduced instantaneous balance during resting state compared to other545

states at first sight seems to argue against model validation with RS data. However, the balanced546

state does not necessarily rely on instant tracking between excitatory and inhibitory population547

activities. What it demands instead is a cancellation in the input to each single neuron, which548

does not uniquely define a correlation structure between outputs (Helias et al., 2014). Deviations549

between population activities can indeed be organized such that their net effect to the summed550

input to single neurons cancels out (Tetzlaff et al., 2012; Baker et al., 2019). Furthermore, one551

should keep in mind that we investigate a rather large time scale, and the apparent reduction of552

balance could be an effect of fewer transient activities contributing to the correlation between553

excitatory and inhibitory population activities during rest. Nevertheless, we find principally well-554

balanced population firing in all behavioral states and we show that spiking during rest is neither555

dominated by excitation nor by inhibition which indicates that RS periods are in agreement with556

balanced network models.557

Related to balance, modelers often assume uncorrelated or weakly correlated external inputs558

to local networks, but it is impossible to determine the amount of correlations in the neuronal559

input with extracellular recordings. Strongly correlated inputs, attributed to sensory (Decharms and560

Merzenich, 1996) or movement processing (Murphy et al., 1985), may boost the modulation of firing561

rates on the population level. This could lead to higher pairwise covariances and subsequently lower562

dimensionalities than expected in artificial networks with a well controlled input structure. We find563

that such a decrease in dimensionality, is, for example, particularly pronounced during task-induced564

movements. This again points out the necessity to separate between rest and movements in order565

to avoid potential unrealistic mismatch between input and output statistics of spiking models.566

Heterogeneity of neuronal networks567

Another point is the remarkable heterogeneity of neuronal activities in experimental recordings:568

SUs show a broad range of firing rate profiles and spiking (ir-)regularities, as well as distinct activity569

modulation related to behavioral state changes. Neuronal network studies mostly are able to570

reproduce this heterogeneity. Single-neuron properties (e.g. time constants, synaptic weights)571

and connectivities are typically given as parameter ranges described by certain distributions de-572

rived from experimental measurements (Kumar et al., 2008; Voges and Perrinet, 2012; Potjans573

and Diesmann, 2014). Depending on the widths of these distributions (and other features) the574

resulting activities can and should be adapted to the heterogeneity in experimental data (Dahmen575

et al., 2019). An advantage of heterogeneous network activity is that it enhances the stability576

of the "idle" state (Denker et al., 2004) which is essential for real-world neuronal networks that577

need to be able to operate under various conditions. For example, the different behavioral states578

analyzed here demonstrate that the motor cortex operates in similar dynamical regimes for various579
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kinds of behaviors, including movements and sleepiness. The stability range of network models580

can be further increased by including more real-world features like homeostatic mechanisms (e.g.581

adaptation, short term plasticity) which also support a high (temporal) heterogeneity.582

583

In summary, we encourage modelers to (continue to) incorporate the heterogeneity of real-world584

neuronal activities and we conclude that the validation of network models that claim to simulate idle585

states should be based on resting state data. Still, even when considering REST recordings without586

any task or stimulus, it is necessary to separate out the "pure" resting state periods because they587

show distinct statistical properties: lower firing rates, fewer transient activities, smaller covariances588

and thus a higher dimensionality.589

Definition of behavioral states590

The rather vague classification of behavioral states in REST recordings is based on observing the591

monkey in contrast to the precise classification in R2G experiments which relies on external cues.592

The consequence of this difference in precision is clearly visible on the level of the spiking activity593

statistics: In addition to the higher spike time irregularity and the higher (broadly distributed)594

spike count variability in REST compared to R2G, REST states also show a less clear state-specific595

difference in the dimensionality results.596

In addition, there is the problem of different time scales (i.e., slice lengths): 0.5 s as forced by597

the R2G settings versus the heuristically chosen 3 s in REST. Thus, some comparisons between598

single behavioral states of these two data types might be unfair, but we still observe the expected599

commonalities in the states with (TM, M) versus without movements (PP, RS): Non-movement states600

show generally lower firing rates, a higher dimensionality, and a lower instantaneous balance.601

Eyes open vs closed602

The sleepy resting state RSS, however, turns out to be a special case. As already mentioned,603

the LFP spectra during RSS and the firing statistics of RSS are monkey-specific: in monkey E, the604

distinction between RS and RSS is more pronounced than in monkey N. However, concerning both605

dimensionality and instantaneous balance, the RSS distributions of the monkeys are similar. In606

addition, mean dimensionalities are closer to the ones obtained for M than for RS, even though RSS607

is a non-moving state. In accordance with observations that the motor cortex can show distinct608

reactions to visual stimuli (Wannier et al., 1989; Riehle, 1991), we conclude that the distinction609

between eyes-open and eyes-closed is important even in the motor cortex, since there is an impact610

on the neuronal activity. RS and RSS can be distinct physiological states in a given monkey: monkey611

E seems to be really drowsy when its eyes are closed while monkey N might be simply bored. This612

example also shows the importance of verifying the result of the visual behavioral segmentation613

with the LFP spectra of the resulting states.614

Alternative classification methods615

There are other possibilities for the behavioral segmentation of REST recordings. One idea would616

be an automatic decoding of behavioral state purely based on SU firing properties by means of617

machine learning methods, e.g., Pandarinath et al. (2018). Given that approximately 50% of all618

SUs exhibit a strong correlation between firing rate modulations and behavior, such an approach619

would probably be possible but not necessarily straight-forward. If there were enough data to620

define an appropriate learn set, a machine learning algorithm could, for example, identify SUs that621

consistently increase or decrease their firing rate with specific state changes. Such an approach,622

however, is beyond the scope of this study. Another idea would be to increase the temporal623

precision of the visual segmentation by means of an automated detection of transient neuronal624

activities. Yet, the detection of transient activities in itself is not trivial (Ito et al., 2019), it does not625

allow to distinguish between RSS and M, and particularly in our data a 3 s long movement epoch626

contains several such transients in an unknown frequency. We do not pursue this approach, as it is627
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again beyond the scope of this study.628

Resting state as superposition of sub-network activities629

An interesting hypothesis emerges from the comparison of our study to resting state studies630

based on large-scale measurements. Similar to the observation of activations and deactivations631

of specific brain areas in fMRI studies (Biswal et al., 1995; Fox and Raichle, 2007; Raichle, 2009;632

van den Heuvel and Hulshoff Pol, 2010; Deco et al., 2011), we observe systematic in- and decreases633

in the spiking activity of numerous SUs. Large-scale studies conclude that spontaneous brain634

activity emerges from a set of resting state networks (Fox and Raichle, 2007; Raichle, 2009; van den635

Heuvel and Hulshoff Pol, 2010; Deco et al., 2011), i.e., from a sequence of consistently re-occurring636

spatio-temporal activity patterns that resemble task-evoked activity, but are present during rest637

(Vincent et al., 2007; Fox and Raichle, 2007; van den Heuvel and Hulshoff Pol, 2010). One could638

thus hypothesize a similar phenomenon on the microscopic level of spiking activity: a resting state639

composed of the activities of several sub-networks of single neurons in the motor cortex. During640

movements, one could imagine a convergence of the neuronal activity into specific networks (cf.641

(Fox and Raichle, 2007;Mazzucato and La Camera, 2016)). The larger spatial spread of the activity642

observed during RS compared to M (see Appendix 2) would be in line with the above hypothesis,643

assuming that a superposition of many spatially embedded networks yields an enlarged spatial644

extent than a single such network (cf. Fig. 1 in Appendix 2). Likewise, the high dimensionality645

observed during RS agrees well with the hypothesis of a superposition of several sub-networks.646

647

Yet another question concerns the definition of "rest" in general: how to define it in other cortical648

areas than motor cortex, e.g., in sensory systems? For the auditory system one would intuitively649

assume that silence or white noise as auditory input represents the resting condition. Similarly,650

for the visual system one could use a uniform or noise background as visual input. The choice of651

"eyes-closed" as rest condition would, however, represent a different behavioral state compared to652

our assumption of sleepy rest being a qualitatively different condition.653

Given all the issues concerning the definition of "rest" and the behavioral segmentation, together654

with the superposition of RSNs on the scale of brain areas, one could claim that it is futile to attempt655

to characterize the spiking activity during an assumed resting state. However, our results clearly656

demonstrate a set of significant differences between the spiking activity in motor cortex during657

"rest" as compared to other behavioral conditions.658

Conclusions659

We demonstrate that spiking activity in monkey motor cortex during rest differs significantly from660

other spontaneous and task-related behavioral states, for example sleepiness and movements.661

The main characteristics of the resting state activity are low average firing rates combined with a662

high variability of single-unit spiking statistics, and a pronounced complexity as indicated by a less663

coordinated firing which results in a higher dimensionality of the network activity. We show that664

and explain why neuronal network models should be validated against resting state data, aiming to665

enhance the trend towards realistic network models that account for the heterogeneity in neuronal666

data. We hope that our study is just the beginning of the characterization of "rest" on the level of667

spiking neurons. More specific analysis is needed to quantify transient activities, their relation to668

the balance between exitatory and inhibitory population activities, and to provide an automated669

algorithm for the behavioral segmentation of REST recordings.670

Materials and Methods671

We first describe the two types of experimental recordings analyzed in this paper: resting state672

(REST) and reach-to-grasp (R2G) data, the latter obtained during a behavioral task. Then, we explain673

the experimental procedure and the pre-processing of all data types with a particular focus on the674
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REST recordings and their behavioral classification. Finally, the measures calculated to characterize675

different behavioral states are listed and explained.676

Experimental paradigm and recordings677

Two adult macaque monkeys (Macaca mulatta), female (monkey E) and male (monkey N), partici-678

pated in two distinct behavioral experiments: resting state (REST) and reach-to-grasp (R2G). Monkeys679

were chronically implanted with a 4x4mm2 100 electrode Utah Array (Blackrock Microsystems, Salt680

Lake City, UT, USA) situated in the hand-movement area of (pre-)motor cortex. Spiking activity and681

LFP were recorded continuously during an experimental session, with sampling frequency of 30 kHz.682

Details on surgery, recordings and spike sorting, as well as on the R2G settings are described in683

Riehle et al. (2013, 2018); Brochier et al. (2018)684

During a resting state session, the monkey was seated (but not fixated) in a primate chair. The685

chair was positioned so as to prohibit the animal from reaching any objects. There was neither a686

particular stimulus nor any task, the monkey was free to look around and move spontaneously.687

In addition to the registration of brain activity, the monkey’s behavior was video recorded and688

synchronized with the electrophysiology. For each monkey two such sessions were recorded and689

lasted approximately 15min for monkey N and 20min for monkey E.690

In the R2G experiments, monkeys were trained to perform an instructed delayed reach-to-grasp691

task to obtain a reward, see Fig. 1B. The monkey had to self-initiate a trial by closing a switch (TS).692

After 800ms a CUE-ON signal provided some task-related information. 300ms later, the CUE signal693

was switched off which defined the start of the preparatory period, during which the monkey was694

supposed to sit still. One second after the CUE-OFF, a GO signal provided the complementary695

task-related information and indicated the monkey to start moving. The monkey had to release the696

switch (SR) and reach to the target. After grasping the object, the monkey had to pull and hold it697

for 500ms to obtain the reward (RW). Brain activity was recorded together with time stamps of all698

events within a trial.699

Table 1 lists all single recording sessions for both REST and R2G experiments. Typically, a700

REST recording was performed subsequent to an R2G recording session. Only the E2 session was701

recorded directly before an R2G session which is probably the reason for the missing RSS intervals.702

The monkey was rather twitchy, impatiently waiting for the R2G tasks, because R2G experiments703

include a reward while there was no reward during REST recordings.704

Pre-processing705

The waveforms of potential spikes were sorted into the SUs offline and separately on each electrode706

using the Plexon Offline Spike Sorter (version 3.3, Plexon Inc., Dallas, TX, USA), see Riehle et al.707

(2018). Synchrofacts, i.e., spike-like synchronous events across multiple electrodes at the sampling708

resolution of the recording system (1/30ms) (Torre et al., 2016), were then removed. Sorted units709

were separated into broad- and narrow-spiking SUs representing putative excitatory and inhibitory710

neurons, respectively. The separation was achieved by thresholding the spike-widths distribution711

(Bartho et al., 2004; Kaufman et al., 2010, 2013; Peyrache et al., 2012; Dehghani et al., 2016) in the712

following way. For a given monkey, average waveforms from all SUs recorded in all considered713

sessions (REST and R2G) were collected. Based on the distribution of spike-widths (time interval714

between trough and peak of a waveform), thresholds for "broadness" and "narrowness" were715

chosen such that the values in the middle of the distribution stayed unclassified (Fig. 7). For monkey716

N, spikes with a width shorter than 0.4ms were considered to be narrow (ns—narrow-spiking SUs,717

putative inhibitory neurons), whereas spikes longer than 0.41ms were considered to be broad718

(bs—broad-spiking, putative excitatory neurons). For monkey E, spikes narrower than 0.33ms were719

considered as ns SUs and spikes broader than 0.34ms were considered as bs SUs. The difference720

between monkeys was due to different filter settings during the recordings.721

Next, a two step classification was performed. For a given session, the thresholds were applied722

to the averaged SU waveforms (first preliminary classification). Secondly, the single waveforms of all723
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estimation of covariances within each slice, c) to average across slices, we need as many slices as758

possible. Following these arguments, each behavioral segment was cut into as many continuous759

slices as possible. For example, if a REST segment was 7 s long, it was separated into two slices760

of 3 s and the remaining 1 s was not considered for the analysis. In the R2G data, the slice length761

for the 2 behavioral states was 0.5 s by definition, see above. When directly comparing REST and762

R2G data, we either considered 0.5 s slices for the REST data (comparison of firing statistics) or we763

concatenated six 0.5 s slices of the R2G data to 3 s slices (analysis of covariances and balance).764

LFP Spectra765

The spectral density of the LFP (sampling frequency of 1000Hz) in different behavioral states in REST766

and R2G data was estimated with Welch’s method provided by Elephant (https://python-elephant.767

org). We considered 3 s slices for the REST and 0.5 s slices for the R2G data. The spectra shown768

in Fig. 1 were obtained by averaging over single spectra from state-specific slices of all respective769

recordings. We used a Hanning window of 1 s and an overlap of 50% for the REST data while the770

R2G spectra were estimated with a Hanning window of 0.3 s with an overlap of 50%. Additionally, an771

artifact in session N1—high-amplitude synchronous peak on all recording channels—was removed:772

it was replaced by the average of the remaining signal.773

Data analysis774

To characterize and compare different behavioral states, we employed a set of analysis tools. We775

quantified the correlation between neuronal firing and behaviour and characterized firing properties776

of SUs, as well as the coordinated firing of pairs of SUs. We also calculated the dimensionality777

of spiking and the balance between time-resolved putative excitatory and inhibitory population778

counts.779

Pre-processing and data analyses were performed in Python, version 2.7, with the Elephant pack-780

age (https://python-elephant.org). Since our distributions were typically non-Gaussian, significance781

of differences between them was assessed via Kruskal-Wallis tests for multivariate comparisons782

(KW, non-parametric alternative to a one-way ANOVA), with significance level � = 0.001. Multiple783

comparisons were corrected for with a Bonferroni-Holm correction.784

For visualizations of distributions obtained for different behavioral states, we used notched785

boxplots. The line in the center of each box represents the median, box’s area represents the786

interquartile range, and the whiskers indicate minimum and maximum of the distribution (outliers787

excluded).788

Behavioral correlation789

For each REST session, we defined a state vector based on the behavioral segmentation, see790

Sec.Materials and Methods: Behavioral Segmentation. Each entry represented 1 s of the recording791

and was set to -1 for RS, to -2 for RSS and to 1 for M. To assess the relation between SU activity792

and monkey’s behavior, the FR (in 1 s bins, no overlap) of each SU was correlated (Spearman793

rank correlation) with the modified state vector of a given session: entries for RSS were zeroed.794

Only pairs of entries in which the modified state vector was different from zero were considered.795

This procedure resulted in a value which we called behavioral correlation: BC ∈ [-1,1], and the796

corresponding p value (indicating statistical significance if p < 0.001, with correction) for each SU,797

see Fig. 2B. Positive BC indicated that the FR increased during movements or decreased during rest,798

and vice versa. We investigated the distributions of BC values separated between ns and bs SUs,799

see Fig. 2C.800

For a substantiation of these results, we additionally performed Kruskal-Wallis tests on all three801

behavioral states defined in REST (M, RS, and RSS), separately for each SU, to check for significant802

changes in the SU firing rates. Note that this method does not provide any quantification of803

amplitude of the correlation similar to BC.804
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For both tests described above, we calculated the percentage of SUs that changed their FR805

significantly (after correction) with changes in the behavioral states, see Tab. 2. This procedure was806

performed for all SUs and separately for ns and bs neurons.807

Next, we again applied Kruskal-Wallis tests for pairwise comparisons between three behavioral808

states per SU, asking for a significant in- and decreases in firing. This analysis was performed on809

3 s long data slices. Tab. 3 lists the percentages of all SUs which either significantly increased or810

decreased their FR in one state with respect to another.811

Neuronal firing in REST and R2G states812

To compare the SU firing properties in behavioral states from different experiments, we used 0.5 s-813

long slices of both REST and R2G recordings. In REST, the single seconds at the transitions from one814

state to another were excluded. For each time slice of each SU, we estimated the average firing rate815

FR and the local coefficient of variation CV2 (Ponce-Alvarez et al., 2010; Voges and Perrinet, 2010;816

Riehle et al., 2018), and per SU across slices the Fano factor FF (Nawrot et al., 2008; Nawrot, 2010;817

Riehle et al., 2018). For the REST recordings, we also calculated the commonly used coefficient of818

variation CV (Shinomoto et al., 2003; Ponce-Alvarez et al., 2010; Voges and Perrinet, 2010), shown819

in the additional Figure in Appendix 1 Sec. Transient activities.820

CV and CV2 are based on the inter-spike-interval distribution of a SU (Shinomoto et al., 2003;821

Ponce-Alvarez et al., 2010; Voges and Perrinet, 2010; Riehle et al., 2018). They characterize the822

(ir-)regularity in neuronal firing. A value close to zero indicates regular spiking, a value of one823

indicates Poissonian spiking, and a value above one even more irregular firing. The CV2 corrects for824

transient firing rate changes which yield inappropriately high CV values (Ponce-Alvarez et al., 2010;825

Voges and Perrinet, 2010). The FF describes the variability in SU spike counts across trials (R2G) or826

time slices (REST) (Nawrot et al., 2008; Nawrot, 2010; Riehle et al., 2018).827

We compared the FR and CV2 values obtained for each SU within each slice of RSS, RS, M, TM and828

PP states in two different ways, see Fig. 3. On the one hand, we averaged over time slices/trials to829

represent the variability with respect to SUs. On the other hand, we averaged the results obtained830

for each data slice/trial over SUs in order to analyse the variability of our measures in time. The831

significance of the differences between the behavioral states was assessed with a Kruskal-Wallis832

test including a Bonferroni-Holm correction, both when comparing all 5 states and in pairwise833

comparisons.834

Covariances and dimensionality835

To measure the joint variability in rate modulation, we calculated the pairwise spike-count co-836

variances (COV, Cohen and Kohn (2011); Dahmen et al. (2019)). REST data were cut and R2G data837

concatenated into 3 s slices (state-resolved) and binned into 100ms intervals. The bin size of 100ms838

was a compromise between obtaining enough bins to calculate covariance values (given a slice839

length of 3 s), considering enough spikes for reliable estimation of covariance, and using a time840

scale appropriate for the examination of rate modulations. For R2G data this procedure implied841

that data from 6 consecutive trials contributed to a single COV value.842

The COV between spike trains i and j was defined as:843

COV(i, j) =
⟨bi − mi, bj − mj⟩

l − 1
, (1)

with bi and bj—binned spike trains, mi and mj being their mean values, l the number of bins, and844

⟨x, y⟩ the scalar product of vectors x and y. Thus, for each 3 s slice of a particular state we obtained845

a COV matrixM ∈ ℝNSU×NSU with NSU—number of SUs.846

Based on the COV matrices, we calculated the participation ratio PR to characterize the dimen-847

sionality of activity in different behavioral states, seeMazzucato and La Camera (2016); Gao et al.848

(2017). Eigenvalue decomposition of COV matrixM yields NSU eigenvalues � with corresponding849

eigenvectors �, such thatM�i = �i�i. The eigenvalues were used to calculate the participation ratio850
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we binned the 3 s time slices (concatenated from six consecutive trials of 0.5 s for R2G data) into878

100ms bins. Next, we applied two methods to quantify the balance between population activities.879

Firstly, the same as for the multiscale balance, we z-scored the population activities, using880

the respective mean and standard deviation of the whole recording (not state-specific). Then, we881

calculated, separately for each state, the difference between the z-scored bs and ns population882

activity of each 100ms bin in each time slice: A negative value indicated a domination of ns activity883

while a positive value meant that the bs activity was higher. Fig. 5C shows the corresponding884

state-resolved histograms.885

Secondly, we calculated the Spearman rank correlation between raw bs and ns population886

activities for each time slice: The higher the correlation �(bs,ns), the more strict the instantaneous887

balancing between the ns and bs populations (cf. (Renart et al., 2010; Tetzlaff et al., 2012)). The888

state-resolved results are presented in box plots (Fig. 6A).889

To investigate the relationship between balance and dimensionality, we calculated the Spearman890

rank correlation between �(bs,ns) and PR′ for each monkey, pooled over all REST and R2G sessions,891

respectively (Fig. 6C, D and Tab. 6).892
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