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1 Abstract Resting state has been established as a classical paradigm of brain activity studies,

12 mostly based on large scale measurements such as fMRI or M/EEG. This term typically refers to a
13 behavioral state characterized by the absence of any task or stimuli. The corresponding neuronal
14 activity is often called idle or ongoing. Numerous modeling studies on spiking neural networks

15 claim to mimic such idle states, but compare their results to task- or stimulus-driven experiments,
16 which might lead to misleading conclusions. To provide a proper basis for comparing physiological
17 and simulated network dynamics, we characterize simultaneously recorded single neurons' spiking
18 activity in monkey motor cortex and show the differences from spontaneous and task-induced

19 movement conditions. The resting state shows a higher dimensionality, reduced firing rates and
20 less balance between population level excitation and inhibition than behavior-related states.

2 Additionally, our results stress the importance of distinguishing between rest with eyes open and
2 closed.

23

2 Introduction

25 The resting state in behavioral studies is defined operationally as an experimental condition without
26 imposed stimuli or other behaviorally salient events (Raichle, 2009; Snyder and Raichle, 2012). It has
27 become a classical paradigm for experiments involving large scale measurements of brain activity
2 like fMRI and M/EEG (Vincent et al., 2007; Raichle, 2009; Deco et al., 2011; Snyder and Raichle,
2 2012; Baker et al., 2014). A major conclusion of these studies is that spontaneous brain activity in
3 human and monkey can be characterized as a sequence of re-occuring spatio-temporal patterns of
31 activation or deactivation resembling task-evoked activity, but present during rest (Vincent et al.,
32 2007; Fox and Raichle, 2007; van den Heuvel and Hulshoff Pol, 2010) Defined on the whole-brain
33 level, they are shaped by anatomical connectivity and derived from functional connectivity (Honey
¢ etal., 2009; Bastos and Schoffelen, 2016).

35 While the exact link between the fMRI signal and neuronal activity is a matter of ongoing research
6 (Logothetis and Wandell, 2004; Ekstrom, 2010), resting state studies have also been carried out on
37 the level of single brain areas. Here, the spontaneous activity is often referred to as ongoing, intrinsic,
33 baseline, or resting state activity, and can be studied by means of, for example, optical imaging
39 combined with single electrode recordings (Arieli et al., 1996; Tsodyks et al., 1999; Kenet et al.,
40 2003). Such data, collected under anesthesia, were used to investigate the variability in evoked
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4 cortical responses (Arieli et al., 1996), the switching of cortical states (Tsodyks et al., 1999), and the
4 link of these cortical states to the underlying functional architecture (Kenet et al., 2003). In our
43 study, we aim to characterize the resting state on yet another spatio-temporal scale, namely on the
a4 scale of simultaneous single unit (SU) spiking activity recorded in macaque monkey (pre-)motor cortex.
as Spiking activity in monkey motor cortex has been studied extensively during arm movements,
4 which gives rise to an increased average neuronal firing compared to wait (Nawrot et al., 2008;
47 Rickert et al., 2009; Riehle et al., 2018). On a single unit level, direction-specific neuronal sub-
45 populations encode the movement direction by firing rate modulations (Georgopoulos et al., 1986;
49 Rickert et al., 2009). These and other studies also investigated the spike time irregularity and the
so  spike count variability in monkey motor cortex during various behavioral epochs: Movements have
s1  been related to a lower spike count variability across trials (Rickert et al., 2009; Churchland et al.,
s2  2010; Riehle et al., 2018) and to a higher spike time irregularity (Davies et al., 2006; Riehle et al.,
ss  2018) compared to wait or preparatory behavior without movements. However, the resting state
s« we analyze in this study is conceptually distinct from waiting or preparatory epochs: there is no
ss task to prepare for and no signal to be anticipated. It is a state without any particular expectations
ss or dispositions.

57 Studies on spiking neural network models aim to mimic brain dynamics down to the level of
ss individual neuron activities. Bottom-up modeling approaches thereby derive the structure and
ss parameters of network models from anatomy and electrophysiology, trying to reproduce and
s understand experimentally observed activity features of increasing complexity. For simplicity and
¢ due to missing knowledge of inputs to local circuits, such studies often focus on the idle state
¢2 and intrinsically generated dynamics of networks (van Vreeswijk and Sompolinsky, 1996, 1998;
es Brunel, 2000; Kumar et al., 2008; Voges and Perrinet, 2010; Potjans and Diesmann, 2014, Dahmen
e et al, 2019). This approach provides the prerequisite to study network dynamics and function
es in the presence of external stimuli and finally its relation to behavior. There are computational
6 frameworks that can be used for a quantitative comparison or, ultimately, validation of such spiking
&7 neural network models against experiments (Gutzen et al., 2018), but data on single unit activity
68 in resting-state condition is still lacking. As a consequence, network models are often compared
¢ to data collected in behavioral experiments, where tasks or stimuli lead to transient deviations
70 from the resting-state statistics such as e.g. the average firing rates (Georgopoulos et al., 1986;
71 Riehle et al., 1997, Kaufman et al., 2013; Riehle et al., 2018). Recently developed biophysical
72 forward modeling schemes (Einevoll et al., 2013) in combination with large-scale network models
73 (Potjans and Diesmann, 2014; Schmidt et al., 2018a,b; Markram et al., 2015) in principle provide a
74 possible way to employ existing resting-state fMRI and M/EEG data to benchmark spiking network
75 models. However, the complexity of the dynamics on the level of individual neurons is lost in these
76 mesoscopic and macroscopic measures of activity. Therefore, to provide a suitable reference for
77 the validation of spiking neural network models on the single neuron (microscopic) level, we here
78 present an analysis of massively parallel spiking activity in macaque monkeys at rest.

79 The aim of this study is a detailed characterization of the spiking activity at rest compared to
s task-induced and spontaneous movements. To this end, we recorded the ongoing activity with a
g1 4x4mm? 100 electrode Utah Array (Blackrock Microsystems, Salt Lake City, UT, USA) situated in the
;2 hand-movement area of macaque (pre-)motor cortex. We performed two types of experiments:

83 1. During resting state experiments (REST), we recorded the neuronal activity of two monkeys
84 seated in a chair with no task or stimulation. The spontaneous behavior was then classified
85 into periods of (sleepy) rest and movements.

86 2. Reach-to-grasp experiments (R2G) (Riehle et al., 2013; Torre et al., 2016; Brochier et al., 2018;
87 Riehle et al., 2018) provide well-defined periods of task-related movements and task-imposed
88 waiting. The latter behavior is similar to rest but contains a mental preparation task.

s We ask if a distinction between spontaneous (resting and non-resting) and task-evoked (reach-to-
grasp) neuronal dynamics is expressed on the level of single unit (SU) and network spiking activity.

w0
S
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91 More specifically, we also ask if certain features of the neuronal firing during pure resting periods
%2 allow for a differentiation from spontaneous and task-induced movements, preparatory periods,
93 or sleepiness. Contrary to this expectation, the motor system may show invariants, i.e., statistical
9 properties of the neuronal spiking that do not change with respect to different behavioral epochs.
ss  While such comparisons have been performed on the level of local field potential (LFP) recordings,
% e.g., the investigation of behavior-related frequency modulations (Engel and Fries, 2010; Kilavik
97 et al., 2013), to our knowledge this is the first study to perform such comparison on the level of
9 spiking activity.

99 In the following, we first detail how we performed the segmentation of REST recordings according
100 to behavior, and then explored the activity of single neurons in different behavioral states. To
101 investigate if there are comparable neuronal activity states in task-related data, we performed
102 similar analyses for the R2G data. Apart from the SU dynamics, we also focused on network
103 properties of the neuronal activities: We evaluated pairwise covariances, dimensionality of rate
104 activities, and excitatory-inhibitory balance in the different behavioral states of both REST and R2G.
105 The comparison to the R2G data enabled us to identify systematic network state changes which are
106 less pronounced in REST.

107 Results

e We aim to determine in what regards spiking activity during rest is distinct from other behavioral
109 states like spontaneous movements, sleepiness, movement preparation, or task-induced grasping.
10 To do so, we first describe the behavioral segmentation of the REST data based on videos of the
11 monkeys during the experiment, resulting in a sequence of defined behavioral states in REST. The
112 segmentation of R2G was chosen as in previous studies on these data (Riehle et al., 2018). Then,
13 we show that the behavioral segmentation is meaningful in terms of neuronal activity on two
na  different scales: On the mesoscopic scale, which incorporates the collective behavior of neurons,
15 we show that the LFP spectra differ across states. On the microscopic scale, we show that SU firing
116 is correlated to the monkeys’ behavior, and examine the relation between behavior, spiking activity
17 dimensionality and excitatory-inhibitory balance.

ns Behavioral segmentation

119 Based on video recordings, each REST session (two per monkey) was segmented according to
120 the monkey’s behavior, (cf. Materials and Methods: Behavioral Segmentation). Three states were
121 considered: resting state (RS)—no movements and eyes open; sleepy resting state (RSS)—no
122 movements and eyes (half-)closed; spontaneous movements (M)—movements of the whole body
123 and/or limbs (Fig. 1A). For R2G recordings, two behavioral states were defined with respect to trial
124 events. For these states, interval lengths of 500 ms were used: the first part of the preparatory
125 period (PP)—500 ms after the first cue, when the monkey waits immobile for the GO; and a task-
126 related movement period (TM)—an interval containing movement onset and grasping (Fig. 1B).

127 The visual segmentation is substantiated by comparison of the LFP spectra in the above defined
128 states (Fig. 1C). The relationship between LFP and behavior has been shown in several studies, e.g.
129 Pfurtscheller and Aranibar (1979); Fontanini and Katz (2008); Engel and Fries (2010); Takahashi
130 et al. (2011); Kilavik et al. (2013). Beta oscillations (13 to 30 Hz) have been linked to states of
131 general arousal, movement preparation, or postural maintenance (Baker et al., 1999; Kilavik et al.,
132 2012) and are typically suppressed during active movement (Pfurtscheller and Aranibar, 1979).

133 In our data, RS and PP show peaks in the range from ~10 to ~30 Hz (alpha/beta range), the
134 peak in PP occurs for a higher frequency than in RS. In both monkeys, M and TM contain more
135 power compared to other states in frequencies above ~50 Hz (gamma), while beta power is reduced.
13 However, the spectrum during RSS differs between monkeys. In monkey E, RSS seems to be a
137 distinct physiological state: it shows strong slow oscillations, as to be expected (Gervasoni et al.,
138 2004; Fontanini and Katz, 2008) for a sleepy version of RS. In monkey N, however, the spectra
139 during RSS are more similar to RS, but still with more power in the lower frequency bands.
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Figure 1. Behavioral segmentation in REST and R2G recordings. (A) Order and relative duration of the
behavioral states defined within each REST session (single second precision): resting state (RS, light green)
represents no movements and eyes open, sleepy rest (RSS, dark green) represents no movements and eyes
(half-)closed, spontaneous movements (M, pink) represent movements of the whole body and limbs. (B) Order
and timing of events within a single trial of an R2G session. Colored lines above the time axis indicate time
intervals considered for the analysis: preparatory period (PP, cyan) and task-induced movements (TM, purple).
SR indicates the switch-release event—beginning of the hand movement. PP was defined as [CUE-OFF,
CUE-OFF+500 ms], and TM as [SR, SR+500 ms] for monkey E, and [SR-150 ms, SR+350 ms] for monkey N
(different for the two monkeys due to differences in performance speed). (C and D) Power spectral density of
LFP in different behavioral states. Panels in C pertain to REST, panels in D to R2G, left for monkey E and right for
monkey N, respectively. States are defined in A and B. The peak at 50 Hz in the R2G spectra is an artifact (line
frequency) and was not considered.
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Table 1. List of all considered experimental recordings. Session names (first column) starting with "e" refer to
monkey E, and with "i" to monkey N. Throughout the manuscript the REST sessions are referred to as E1, E2, N1
and N2. Each R2G trial yields one PP and one TM period, equally long (0.5s each).

REST session #slices: 35 (0.55) #SUs (#Dbs, #ns)
RSS RS M
e170103-002 (E1) 40(232) 196(1058) 43(200) 115 (56, 50)
e170131-002 (E2) 0 189 (970) 67 (308) 133 (67, 56)

i140701-004 (N1) 20(114) 151(840) 58(312) 130 (76, 45)
i140615-002 (N2) 45(258) 156(836) 36(180) 154 (78, 62)

R2G session #trials #SUs (#Dbs, #ns)
e161212-002 108 131 (50, 56)
€161215-001 102 92 (41,37)
e161220-001 114 98 (45, 33)
e161222-002 102 118 (57, 41)
e170105-002 101 115 ( 60, 45)
€170106-001 100 116 (57, 43)
i140613-001 93 138 (71, 56)
i140616-001 130 154 (75, 61)
i140617-001 129 154 ( 83, 59)
i140703-001 142 142 ( 84, 46)
i140704-001 141 124 (70, 43)
140 Table 1 lists all single recording sessions for both REST and R2G experiments. It provides

141 information about the number of SUs (separated into putative excitatory / broad spiking (bs) and
142 putative inhibitory / narrow spiking (ns)) and the number of data slices (3 or 0.5s long in REST) or
143 trials (R2G), in the different behavioral states. Thus in total we have 2 sessions of 15-20 min from
144 each monkey during REST, and 6/5 sessions (of similar durations) of monkey E/N during R2G. This
15 results in 627 R2G trials of monkey E and 635 trials of monkey N. These were compared to the
126 following numbers of data segments of 0.5s during REST: 232, 2028 and 508 segments of RSS, RS
117 and M, respectively, for monkey E and 372, 1676 and 492 segments for monkey N. For details on
g cutting the data see Materials and Methods: Behavioral Segmentation.

149 Relation between neuronal firing and behavior

150 A prerequisite for the following analyses is to formalize a relationship between neuronal spiking
151 activity and the behavioral states of a monkey. Therefore, we quantified the correlation between
152 SU firing and behavior. This is by no means to be taken as a decoding approach, but rather as a
153 substantiation for the approach taken above to differentiate between behavioral states in REST.
154 Figure 2A shows the time-resolved firing rates (FR) of all recorded SUs in one REST session
155 (N1) (Sec. Materials and Methods: Behavioral correlation). They change in time and are variable
156 across SUs, which is true for all REST sessions. The firing rates range from 0 up to ~100 spikes per
157 second. Some SUs exhibit a consistent firing (not visible by eye), e.g., unit 4 in Fig. 2A with a small
158 absolute standard deviation, FR= 1.23 + 1.16, and similarly unit 127 (relative standard deviation
159 FR= 25.29 + 6.46). The firing of other SUs changes considerably over time, e.g., unit 126 with a
10 large absolute standard deviation FR= 20.08 + 12.15, and similarly unit 17 with a relative standard
161 deviation FR= 1.74 + 3.53.

162 To examine this variability with respect to the behavior of the monkey, we defined a behavioral
163 State vector (cf. bottom panel of Fig. 2A). Its entries represent the behavioral states: the value is set
s to +1 if there are movements (M) and -1 if the monkey is at rest (RS), and for the following analysis
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s all other states are not taken into account. The bottom row of Fig. 2B shows the values of the
166 behavioral correlation (BC, see Sec. Materials and Methods: Behavioral correlation) between the
167 state vector and the firing rate (in 1s bins) of each of the SUs, ordered from minimum to maximum.
168 The panel above shows the FR of the corresponding SUs in identical order, averaged over the
160 whole recording period (bars), only over RS periods (green markers) and only over M periods (pink
170 markers). Most SUs increase their firing rate during M (mostly on the right side of the panel), many
171 of them significantly (BC > 0.17, p < 0.001). A much smaller set of SUs increases the firing rate during
172 RS (BC < —0.17), seen mostly on the left side of the panel. This asymmetry between the two states
173 is reflected by the positive average BC in all 4 REST sessions (Tab. 2 col. 3). The second column
172 of Tab. 2 lists the percentage of SUs with significant BC, for all sessions (see Sec. Materials and
175 Methods: Behavioral correlation for the derivation of the BC significance). They range from 40.8
176 t0 66.9%, however, neither the sign nor the amount of the behavioral correlation can be reliably
177 predicted from the average FR: Both SUs with very high or very low mean FR show negative, positive
172 and close to zero BC values. This is also indicated by the insignificant correlation between FR and
179 BC(Tab. 2 col. 4): pgcrr. Yet, the consistently negative pgc ¢ values suggest that SUs with smaller
150 firing rates tend to be more sensitive to behaviour that highly active ones (the lower the mean FR,
181 the higher the mean BC).

182 In order to include the RSS state (in addition to M & RS) in the correlation of neuronal activity and
183 behavioral states, we performed a Kruskal-Wallis test (KW) per SU, which provides information about
12 the significance, but no quantification of the strength of the correlation. The obtained percentage
155 of significantly correlated SUs (p < 0.001) ranges from 55% to 77% in monkey E and from 44% to
186 48% in monkey N (last column of Tab. 2). Thus, we find a clear inter-relation of the behavioral state
157 and the neuronal activity.

188 Since firing rates seem to be not indicative of the behavioral state, we further differentiated the
189 data into putative excitatory and inhibitory neurons (Sec. Materials and Methods: Pre-processing).
10 Fig. 2C shows the distribution of BC values obtained in session N1 for all SUs (green shaded area),
191 and for SU separated into putative excitatory / broad spiking SUs (bs) and putative inhibitory /
192 narrow spiking (ns) SUs (blue and red lines, respectively). In this session we find a significant
193 difference between the ns and the bs BC distribution. However, this could not be substantiated in
194 the data from other recording sessions, indicating that the neuron type does not determine the
105 strength of correlation with behavior. Still, firing of putative inhibitory as compared to excitatory
156 neurons seems to be more related to behavioral states. This is indicated by higher percentages of
197 significantly correlated ns than bs SUs (cf. Tab. 2 col. 2&5), particularly in monkey N, see also the
15¢  higher mean BC of ns in monkey N (cf. Tab. 2 col. 3).

199 In order to include also the RSS state (in addition to M & RS) in the correlation of neuronal
200 activity and behavioral states, we performed a Kruskal-Wallis test (KW) per SU, which provides
201 information about the significance, but no quantification of the strength of the correlation. The
202 Obtained percentage of significantly correlated SUs (p < 0.001) ranges from 55% to 77% in monkey E
203 and from 44% to 48% in monkey N (last column of Tab. 2). Thus, we find a clear inter-relation of the
204 behavioral state and the neuronal activity of the observed population.

205 To examine in more detail behavior-related modulations of average FR, we performed a set of
206 pairwise comparisons between behavioral states per SU (using 3s slices, see Sec. Materials and
207 Methods: Behavioral correlation). Table 3 summarizes the results by listing the percentages of SUs
208 that significantly change their FR with respect to behavior. We observe that ~34 to 67% of the SUs
200 show significantly higher FR during M as compared to RS, but still, 5 to 11% of SUs show significantly
210 higher FR during RS (second and fifth column in Tab.3). Correspondingly, the percentages for RSS
21 versus M show a similar tendency (25 to 48% and 2 to 8%, respectively, col. 3&6). This confirms
212 the results obtained so far, i.e., that there are mostly lower firing rates during rest (RS and RSS) than
213 during movement (M).

214 The properties of M in relation to RS are consistent in the two monkeys, but the RSS state
25 differs between them. Only 3 to 4% of SUs show significantly lower firing in RS than in RSS in
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Figure 2. The correlation between SU firing and behavior for one REST session of monkey N. (A) Time- and
population-resolved firing (spikes/s). SUs are sorted according to average firing rates in increasing order from
bottom to top. The state vector describing the monkey’s behavior is shown below. The time resolution is 1s.
Empty spaces denote periods of unclassified behavior, vertical lines indicate transitions between identified
states. (B) Comparison of average firing rates and behavioral correlation (only M and RS are taken into account).
The SUs in both diagrams are sorted according to increasing values of BC. Red bars indicate broad-spiking (bs,
putative excitatory) and blue narrow-spiking {ns, putative inhibitory) SUs, grey indicates unclassified units.
Green and pink triangles on top of the FR bars indicate the average firing rate of the corresponding SU during
RS and M, respectively. Black stars above the BC bars indicate significant correlations. (C) Distributions of BC
values. In this recording session the difference between the ns (red) and the bs (blue) distribution is significant.

Table 2. Behavioral correlation for all REST sessions. The second column gives the percentage of SUs that show
a significant behavioral correlation (BC, p < 0.001), the third column gives BC averages, and the fourth column

the Spearman rank correlation between average SU firing rate and BC (pgc gr). Column five lists the percentages
of SUs that change their firing significantly (p < 0.001) with the behavioral state, obtained with a Kruskal-Wallis
test on M, RS, and RSS. The numbers in brackets indicate the values obtained when separating between bs (first
entry) and ns (second entry) SUs. 1s resolution.

Session ‘ % SUsgc (bs, ns)  mean BC (bs, ns)  pgeep % SUs,y (bs, ns)

E1 53.9 (50, 60) 0.13(0.14,0.13)  -0.19,p=0.03 54.7 (51.7, 58)
E2 66.9 (64.2,71.4) 0.14(0.14,0.15)  -0.09, p=0.3 76.9 (79.1, 76.8)
N1 40.8 (32.9,53.3) 0.10(0.07,0.15)  -0.13,p=0.2 48.1 (39, 62.2)
N2 46.8 (39.7,54.8) 0.12(0.09,0.14) -0.04, p=0.7 43.5(39.7, 50)
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Table 3. Pairwise comparisons of SU firing rates in different states. Percentage of SUs that exhibit significantly
lower (first three columns) or higher (last three columns) firing rates in the first of the two states indicated in the
column header (RS vs M, RSS vs M, and RS vs RSS) for all REST sessions (in 3 s slices).

Session | RS<M RSS<M RS<RSS | RS>M RSS>M RS>RSS

E1 37.6 24.8 18.8 7.7 7.7 3.8
E2 67 11

N1 33.6 30.5 3.8 6.1 1.5 19.8
N2 42.9 48.1 2.6 4.5 1.9 30.5

26 monkey N, but in monkey E the percentage is ~20% (Tab. 3 col. 4). Vice versa, only 3.8% of SUs show
217 significantly higher firing in RS than in RSS in monkey E, while it is ~20 to 30% in monkey N (last
218 column). Moreover, the percentages of SUs showing lower firing during RS and RSS as compared
219 to M (second and third column in Tab.3) are rather similar in monkey N. However, in monkey E
20 only 25% of SUs show higher firing during M than during RSS while 38% of the SUs show a higher
221 firing during M as compared to RS. Thus, in agreement with our observations of the LFP spectra
222 (cf. Sec. Results: Behavioral segmentation), rest and sleepy rest in monkey E express rather different
223 features while they are quite similar for monkey N.

224 Above we show that the firing of approximately half of the SUs is significantly correlated to the
2s behavior and that RS is, on average, associated with lower FRs than movements. However, the
26 absolute value of the FR alone is not predictive of the response of a SU to different behavioral states.
227 In the following section, we aim to investigate other aspects than mere SU spiking in different
228 behavioral states.

29 Further single unit firing properties and their relation to behavior

230  Given the relation between behavior and SU firing rate modulations, we now ask if other features
231 of SU activity can be directly linked to particular behavioral states. From now on, we include R2G
232 data to additionally look for differences on the level of spontaneous versus task-related behaviors.
233 The box plots in Fig. 3 and the values listed in Tab. 5 describe averaged firing rates (FR), local
24 coefficients of variation (CV2) and the Fano factor (FF), calculated for 0.5 s time slices of all REST
235 and R2G sessions, per SU and time slice (see Sec. Materials and Methods: Data analysis). The CV2
236 characterizes the (ir-)regularity of neuronal firing across time. A value closer to zero (CV250.5)
237 indicates regular spiking, Poissonian firing is characterized by CV2=1 (Shinomoto et al., 2003; Voges
238 and Perrinet, 2010), and values higher than one indicate more irregular spiking. The FF describes
239 the variability of SU spike counts across trials (R2G) or time slices (REST) (Nawrot et al., 2008;
20  Nawrot, 2010; Riehle et al., 2018). It equals one for a Poisson process and decreases for more
21 reliable spiking.

242 Averaged across time slices (Fig. 3A), FR shows the highest median in movement states (M & TM),
243 while it is lower in RS(S) and PP (the differences being mostly significant, see below). Inferred from
244 CV2, the firing is less regular in REST as compared to R2G states, and slightly less regular during TM
245 than during PP, both showing a larger spread of values than the REST states. These differences are
246 minor compared to the differences in the spike count variability: R2G states exhibit a much smaller
247 and less variable FF, i.e., a higher reliability. M and RSS show the highest spread of FF, i.e. highest
248 SU variability. The RS state exhibits a medium mean and spread of FF values.

249 Kruskal-Wallis tests on all 5 behavioral conditions yield highly significant differences between
250 states for each measure (p < 0.0001) for both monkeys. The results of all pairwise comparisons
251 are listed in Tab. 4. For both monkeys, most differences are significant, though CV2 differentiates
252 primarily between REST and R2G recordings, thus between spontaneous and task-related behaviors.
253 Averaging across SUs (Fig. 3B), we examine the variability in time. Note that even though
254 the number of RS time slices highly exceeds that of SUs (cf. Tab. 1), the observed spread of the
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Figure 3. Comparison of firing properties in REST & Table 4. Significance of pairwise comparisons of
R2G states calculated for 0.5s data slices. (A) Box plots firing rate (FR), local coefficient of variance (CV2)
showing the variability across SUs: firing rate, spiking and Fano factor (FF) results shown in Fig. 3A.
regularity, and spike count variability characterized by Upper triangle of each table: monkey E; lower:
FR, CV2, and FF, here averaged over time slices. (B) Box monkey N. Stars indicate significant differences
plots showing the variability over time: distributions of (*: p < 0.001) and minuses insignificant differences
time-resolved FR and CV2 averaged over SUs. Data after Bonferroni correction with a = 0.001. Grey
pooled over REST sessions, two for each monkey (states background highlights significant results.

RSS, RS, and M), and over R2G sessions, six of monkey E
and five of monkey N (states TM and PP).
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Table 5. Quantification of average firing rate (FR, top row), regularity in spiking (CV2, middle row), and spike
count variability (FF, bottom row). Given are mean values (averaged across time slices and SUs) and
corresponding standard deviations with respect to SUs. All values are obtained from 0.5s slices, for different
behavioral states in REST (RSS, RS, M) and R2G (TM, PP), pooled across all recordings of the respective type.

Monkey |  RSS RS M | ™ PP
| Firing rate FR [Hz]
E 6.60+534 | 643+£574 | 879+£6.57 | 874+£9.69 | 5.65+692
N 6.64+4.66 | 781 +£551 | 944+632 | 1434 +12.90 | 9.58 +7.74
Local coefficient of variation CV2
E 0.86+0.16 | 0.83+£0.17 | 0.83+£0.15 | 0.78+0.31 | 0.76 +0.36
0.83+0.15 | 0.79+0.15 | 0.80£0.16 | 0.74+024 | 0.69+0.29
‘ Fano factor FF
E 314+153 | 2064088 | 3.05+1.72 | 1.32+082 | 1.41+0.64
2314130 | 1.86£1.07 | 229 +1.42 | 1.12+0.64 | 1.21+0.78

corresponding values is much smaller. This holds for all behavioral states. Since the variability
across time slices (panel B) is much smaller than the variability across SUs (panel A), we later on
averaged over time and considered only the variability with respect to SUs.

In summary, we find high SU variability in most of the measures for most of the states and the
observed differences between states are mostly significant. Resting periods are characterized by
260 rather low firing rates as compared to movements in agreement with the results in Sec. Results: Re-
261 lation between neuronal firing and behavior. The RS in particular shows a higher reliability (lower
FF) than M and RSS, but all REST states show a clearly higher FF as compared to R2G states.

255
256
257
258

259

262

Network firing properties

We now turn towards the analysis of coordinated firing as opposed to single unit dynamics. Co-
ordination between neurons can be measured at various time scales and quantified with various
methods. We here consider spike-count covariances calculated for 3s slices with a bin size of
100 ms, see Sec. Materials and Methods: Covariances and dimensionality. To this end, we first
show the covariance (COV) distributions, averaged over slices of the REST data (Fig. 4A). While
the average value during all REST behaviors is close to zero, the spread of the COV distributions
270 differs between states, leading to highly significant differences (p <« 0.0001). In monkey E, the
o standard deviation of the covariances is considerably lower during RS (COVgs = 0.007 + 0.033) than
during RSS (@RSS =0.014 + 0.069) and M (@M = 0.033 £ 0.11). The same is true for monkey N:
COVps = 0.008 + 0.028 compared to COVgss = 0.017 + 0.062 and COV,, = 0.012 + 0.062. Statistical
comparison of the shape of the distributions with two-sample Kolmogorov-Smirnov tests reveals
275 significant differences for all pairs in both monkeys. In summary, we find that neuronal firing is less
276 correlated during rest as compared to movements and we again observe distinct RSS properties in
the two monkeys.

The differences in the COV distributions motivate a more detailed investigation of the coor-
dination of all recorded neurons. Apart from mean and variance of the covariance distribution,
230 another summarizing measure for the covariance structure has been established and discussed
231 in the recent years: the participation ratio (PR) (Abbott et al., 2011; Mazzucato and La Camera,
2016; Gao et al., 2017). The PR depends on all covariances in the network as it is derived from the
eigenvalues of the covariance matrix using a principle component analysis. One can show that
it depends on a combination of first and second order moments of auto- and cross-covariances
(Mazzucato and La Camera, 2016). The physical interpretation of the PR is the dimensionality of
the manifold spanned by the neuronal activity (see Sec. Materials and Methods: Covariances and
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Figure 4. Network firing properties. (A) Distributions of pairwise covariances (COV) for the REST recordings of
monkey E (left) and monkey N (right), calculated in 3 s slices with 100 ms bins, averaged over slices per SU pair
and pooled over sessions. {B) Time-resolved participation ratio in session E1, calculated in 3 s long sliding
windows with an overlap of 2 s. Each value on the plot corresponds to the center of the respective window.
Colors in the background indicate behavioral states (cf. legend in the right panel of A). Two bottom panels show
close-up view at periods marked by dashed lines in the top panel. (C) Dimensionality: Box plots show the
normalized participation ratio of REST (RSS, RS, M) and R2G (TM, PP) states for monkey E (left) and monkey N
(right), each single value of the distributions corresponds to a single 3 s data slice. Pooled over sessions.
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237 dimensionality). The higher the PR, the more eigenvectors (principle components) are needed to
238 capture most of the variance of the dynamics. We performed an analysis for the REST and also for
230 the R2G states (0.5 s slices were concatenated to 3 s slices). To make the PR of different experiments
200 and recordings comparable, we normalized to the total number of SU obtained in each session.
291 Figure 4B shows that the dimensionality varies over time (shown for monkey E during REST
292 experiment). It changes with relation to behavior consistently across monkeys (as shown in Fig. 4C).
203 This is true for all sessions (see also Tab. 6). The PR is highest during RS and PP and lowest during
294 TM. The RSS state in both monkeys is clearly distinct from RS, its PR being more similar to the one
205 obtained for M, as seen in the covariance distributions. The spread of the values is notably higher
206 in REST than in R2G states, especially in monkey N.

297 Kruskal-Wallis tests on all behavioral conditions yield highly significant differences (p <« 0.0001)
208 for both monkeys. Pairwise comparisons yield mostly significant results except for RS vs PP, RSS vs
299 M &TM and M vs TM in monkey E, as well as RS vs PP and RSS vs M in monkey N. These results hold
300 for different bin sizes (shown in Sec. Materials and Methods: Covariances and dimensionality).

301 The higher dimensionality of RS as compared to movement states and sleepy rest is a clear
32 evidence for the complexity of this state. Moreover, the large difference between the PR of RS
33 and RSS emphasizes the necessity to distinguish between rest with eyes open and closed. In the
304 following, we will support this claim by analyzing the balance between putative excitatory and
305 inhibitory population activity.

s Balance in population activity

307 Population activities are the most straight forward and well studied low-dimensional projections
s Of neuronal spiking data. Based on summed SU activities, they provide a global view on the
300 network activity, disregarding single neuron-specific fluctuations. Due to the population-averaging,
30 fluctuations on the population level are only determined by the average single-neuron covariances
s (Kriener et al., 2008) and are insensitive to the large variability across single neurons (Fig. 4A).
312 The latter, in contrast, affects the participation ratio (Mazzucato and La Camera, 2016). Studying
313 population-level coordination is therefore complementary to the analysis of dimensionality.

314 Balance between excitation and inhibition is considered an attribute of a physiological network
315 State in contrast to non-physiological states like, e.g., epilepsy (Zhang and Sun, 2011; Dehghani et al.,
316 2016). Theoretical studies simulating cortical network dynamics mostly assume a balanced resting
317 state (van Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000) and relate this to low average
318 covariances between neurons (Renart et al., 2010; Tetzlaff et al., 2012). We here investigate the
319 balance between putative excitatory (bs) and inhibitory (ns) population activities, first globally,
320 similar to Dehghani et al. (2016), and then relating the balance levels to different behavioral states.
321 Figure 5A shows the deviations from balance at different time scales (bin width) in session E1.
32 White color indicates values close to zero, i.e., well-balanced activity, prevalent on smaller time
33 scales. On time scales larger than ~#30 ms, blue and red vertical stripes indicate transient deviations
324 from perfect balance, i.e., an instantaneous dominance of excitation or inhibition, respectively. Such
325 brief fluctuations were also observed during physiological activity by Dehghani et al. (2076).

326 Fig. 5B presents a detailed view on one single time scale: the spike counts in 100 ms bins of
327 bs (blue) and ns (red) population and the difference between z-scored population spike counts in
328 grey, representing a horizontal slice of Fig. 5A. Putative excitatory and inhibitory activities seem
329 to fluctuate simultaneously, indicating balance, although the considered bin size is much larger
330 than 30 ms: Pronounced deviations from average spike counts can be seen in both populations,
33 especially during RSS (dark green background color) and M (pink background). Considering the
332 distributions of mean population spike counts (Appendix 1 Fig. 1), the standard deviations during M
333 and RSS (9.56+2.49 and 7.81+2.75, respectively, ns population, session E1) are much higher than
34 during RS (7.56+1.54). They are even larger (approximately factor 1.7) than expected from the
335 larger means (approximately factor 1.1) which indicates distributions with more extreme values, i.e.,
33 potential transient increases in the population spike count.
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Figure 5. Balance between putative excitatory and inhibitory population activity. (A) Multiscale balance during a single REST session of monkey E.
The x-axis (shared with B) indicates time, the y-axis indicates the temporal resolution (bin size), the color marks the difference between z-scored

putative excitatory and inhibitory population activities. The black trace below indicates behavioral states (cf. Fig. 2A). (B) Close-up view on a 100ms
scale. Population activities and the difference (grey) between z-scored putative excitatory and inhibitory firing from the same session as in A. Colors
in the background denote behavioral states (cf. Fig. 1A). For a better visualization, spike counts of bs (blue) and ns (red) populations, calculated in
100 ms bins, are normalized by their standard deviation instead of z-scoring. Additionally, ns time series is multiplied by (-1). (C) Histograms of the
difference between globally z-scored population activities of putative excitatory (bs) and inhibitory (ns) SUs of all REST (left) and R2G sessions (right)
for monkey E (first two panels) and monkey N (last two panels), calculated in 100 ms bins. Results are pooled across all recordings of the respective

type.
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Figure 6. Instantaneous balance and its relation to dimensionality. (A) Box plots of the correlation between
putative excitatory and inhibitory population activity calculated in 3 s slices, which quantifies the instantaneous
(100 ms) balance for monkey E (left) and N (right). (B) Scatter plots showing the relationship between the
instantaneous balance p(bs, ns) and dimensionality PR, for monkey E (panels on the left) and N {panels on the
right). Each dot represents the PR and p(bs, ns) values of one 3s slice during REST or R2G recording. Results are
pooled across all recordings of the respective type.

337 We performed a quantitative analysis of how the balance between bs and ns SUs relates to the
38 behavioral states, on the time scale of 100 ms, for our REST and R2G data.
339 Firstly, we asked if there was a state-specific prevalence of ns or bs activity. Fig. 5C shows the

a0 results of subtracting z-scored ns from z-scored bs population activity. The histograms show the
san  distributions of values obtained in all 100 ms bins in the pooled REST and R2G sessions of monkey
sz Eand N, and Tab. 6 (top row) lists the values of mean and standard deviation.

343 We find a clear shift between PP and TM distributions in the R2G data of both monkeys: TM
a4 distributions are shifted towards negative and PP towards positive difference values (meanz+std:
45 Ay = —0.16+1.01, App = 0.16+0.85 for monkey E and Aqy = —0.31+1, App = 0.31+0.68 for monkey N),
a6 pointing out a prevalence of ns or bs activity, respectively. This indicates that the balance between
37 the excitatory and inhibitory activity dynamically changes depending on the behavioral state of the
s monkey during task performance.

349 In the REST data of both monkeys, the RSS state is dominated by inhibition (Age = —0.15+0.86 for
30 monkey E and Agg = —0.32+1 for monkey N). Concerning RS and M, however, the general tendencies
s are less pronounced and inconsistent: For monkey E, we find Agg = 0+0.72 and A,, = 0.06+0.85, thus
352 no particular dominance. For monkey N, we find a slight tendency of movements being dominated
3 by putative inhibitory firing similarly to TM (A, = —0.06 + 0.11), while resting periods are again not
54 significantly dominated by any population (Ags = 0.09 + 0.98).

355 Secondly, we quantified the level of instantaneous balance by computing the Spearman rank
356 correlation p(bs, ns) between bs and ns population activity in 3 s data slices {(cf. Renart et al. (2010);
357 Tetzlaff et al. (2012)). A higher correlation value indicates a more strict instantaneous balancing
38 between the excitatory and inhibitory activity. Fig. 6A and B show box plots of the correlation
39 Mmeasure p(bs, ns) for the different behavioral states of the two monkeys, and the corresponding
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Table 6. Quantification and correlation of balance and dimensionality. Top rows: quantification of balance
between putative excitatory and inhibitory population activities (A(bs, ns) and p(bs, ns)). Middle row:
quantification of dimensionality as measured by the participation ratio (PR). Bottom row: Spearman rank
correlation between p(bs, ns) and PR; only p-values smaller than 0.05 are listed. All values were obtained from
3s slices, for different behavioral states in REST (RSS, RS, M) and R2G (TM, PP), pooled across all recordings of
the respective type.

Monkey | RSS RS M | ™ | PP

‘ Putative excitatory/inhibitory prevalence A(bs, ns)

E —0.15+0.86 0.00 +0.72 0.06 + 0.85 —0.16 + 1.04 0.16 +0.89
N -0.32 +1.00 0.09 +0.98 —0.06 + 1.07 —0.28 +0.97 0.28 +0.68
‘ Instantaneous balance p(bs, ns)
E 0.39 +£0.22 02+0.23 0.44 +£0.29 0.26 +£0.22 0.1 +0.21
N 0.36 +0.21 0.17+0.24 0.16 £ 0.24 0.39 +0.24 0.08 +0.21
‘ Participation ratio PR
E 0.100 = 0.015 0.135 +0.019 0.111 +0.028 0.097 = 0.015 0.152 +0.018
N 0.101 £ 0.018 0.130 + 0.023 0.111 +£0.023 0.071 £ 0.012 0.134 +0.010
‘ Spearman rank correlation between p(bs, ns) and PR
E -0.31 -0.44 (p < 0.001) | -0.77 (p < 0.001) 0.14 0.04
-0.32(p < 0.01) | -0.21 (p < 0.001) | -0.42 (p < 0.0001) | -0.33 (p < 0.001) -0.08

30 means and standard deviations are listed in Tab. 6. For monkey E, the correlation between bs and
61 NS activity is highest during M (p,, = 0.47 + 0.25), meaning that the balance was kept best during
32 M state, closely followed by RSS (pgss = 0.4 +0.2), see Fig. 6A, left. RS shows the lowest correlation
363 (pps = 0.26 £ 0.17), it is thus the least balanced state during REST. Pairwise comparisons confirm
364 significantly different results for RS vs M, but not for RSS vs M & RS. In monkey N, RS and M exhibit
s nearly identical correlations (pgs = 0.23 +0.17, p, = 0.24 + 0.17), see Fig. 6B, both are less balanced
36 than RSS (pgres = 0.38 + 0.18) which is significantly more balanced than M.

367 In the R2G data of both monkeys (right panels of Fig. 6A and B, respectively), PP (ppp = 0.18 £0.13
s for monkey E and ppp = 0.19 + 0.14 for monkey N) is less balanced than TM (py, = 0.3 + 0.16 for
so  monkey E and pp,, = 0.38 +0.23 for monkey N); PP shows a significantly (p < 0.001) lower correlation
370 between ns and bs activities. We thus conclude that behavioral states without movements (RS, PP)
snn  are less balanced than movement states when considering a timescale of 100 ms.

372 Participation ratio and balance measure different aspects of correlations in the underlying
373 network. We now ask if and how these measures relate to each other. To this end, we analyzed the
374 relation of PR and p(bs, ns) using scatter plots (Fig. 8C & D)—each 3s slice is represented by a single
375 data point. The points are colored according to the behavioral state they are computed from; RSS,
376 RS & M for REST, and TM & PP during R2G. For the REST data, we observe a negative correlation
377 between PR and p(bs, ns) (see Tab.6): The higher the complexity, the lower the balance. Data points
373 from different behavioral states overlap strongly and are thus not clearly separable. In contrast, TM
379 and PP of the R2G data separate into two different clouds according to their PR, but there is no
30 Clear correlation to p(bs, ns).

= Discussion

2 Experiments without any imposed stimuli or task have been investigated in numerous studies and
;3 referred to with multiple names: (a) ongoing, intrinsic or baseline activity of single brain areas
84 (Arieli et al., 1996; Tsodyks et al., 1999), (b) spontaneous or resting state activity on the whole
s brain level (Vincent et al., 2007; Raichle, 2009; Deco et al., 20117), as well as (c) idle state of point-
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86 neuron network simulations (Brunel, 2000; Potjans and Diesmann, 2014; Dahmen et al., 2019). Yet,
37 a thorough characterization of spiking activity in the resting condition on the level of single neurons
388 was still missing.

389 Here, we investigate the properties of spiking activity in macaque motor cortex during five
30 behavioral states: resting state (no movements, RS), sleepy rest (no movements with eyes closed,
391 RSS), spontaneous movement (M), task-related movement (TM) and task-imposed waiting without
32 movements (PP), with a particular focus on RS. Our main findings are: (a) we demonstrate a
393 considerable correlation between neuronal firing and behavior, (b) we find that RS single unit
394 activity is characterized by relatively low average firing rates and a high variability of interspike
395 intervals and spike counts across data slices, (c) we identify a high dimensionality of the joint
396 activity during RS, which is (d) correlated with a low level of balance between putative excitatory
37 and inhibitory population spiking.

s Single unit activity and LFP during different behaviors

399 Many studies investigate the link between neuronal activity in the motor cortex and behavior using
a0 LFP data (e.g. Pfurtscheller and Aranibar (1979); Fontanini and Katz (2008); Engel and Fries (2010);
a1 Kilavik et al. (2013)). Low frequency oscillations (<15 Hz) are often linked to sleep (Gervasoni et al.,
402 2004; Fontanini and Katz, 2008), beta oscillations (~13-30 Hz) typically appear during movement
403 preparation or postural maintenance (Baker et al., 1999; Kilavik et al., 2012), while faster oscilla-
404 tions mostly reflect attention and neuronal processing during movements (Fontanini and Katz,
405 2008; Liu and Newsome, 2006). Our visual classification of the behavior is in good agreement with
a6 the LFP characteristics shown in the above studies.

407 Firstly, all states without movements (RSS, RS & PP) show pronounced beta oscillations which
a8 are shifted towards higher frequencies during task-imposed rest (PP) compared to spontaneous
409 rest (RS). Secondly, both spontaneous and task-related movements (M & TM) show stronger fast
40 oscillations than non-movement states. The spectra obtained during RSS (eyes closed) indicate
4 distinct physiological states in the two monkeys: the peak frequency during RSS of monkey E occurs
412 at a much lower frequency compared to monkey N. This suggests that closing the eyes indicates
#13 drowsiness in monkey E but not necessarily in monkey N.

414 Furthermore, in agreement with previous studies on behaving monkeys (Nawrot et al., 2008;
w5 Nawrot, 2010; Rickert et al., 2009; Churchland et al., 2010; Riehle et al., 2018), we find that the
w6 spiking activity is highly variable across SUs, and that the average firing rate is increased during
47 movements as compared to waiting for the cue at rest. In REST data, in ~#50% of all SUs, we find
a8 a significant correlation between SU firing and the monkey’s behavior. This indicates that the
a9 analysis of spiking activity is another valid approach next to LFP and large scale recordings to
420 investigate behavioral states, including resting state. Analogously to activations and deactivations
4 of specific brain areas reported in fMRI studies (Biswal et al., 1995; Raichle, 2009; Deco et al., 2011),
42 we observe systematic in- and decreases in firing rates in numerous SUs. Also in agreement with
23 Nawrot et al. (2008); Nawrot (2010); Rickert et al. (2009); Churchland et al. (2010); Riehle et al.
424 (2018), we find a (slightly) lower spike count variability during task related movements (TM) than
a5 during movement preparation (PP) and vice versa for the spike time irregularity’.

426 A new finding of our study is a pronounced difference in variability between REST and R2G
47 states, i.e., between spontaneous and task-related behavior. All REST states show a significantly
48 higher spike count variability and a higher firing irregularity than the R2G states. These differences
49 are probably due to the behavioral constraints present in the R2G but not in the REST experiments.
40 During R2G task, the monkey received visual input to control periods of waiting or arm movements,
4 resulting in well-defined behavioral states and partially constrained mental states with a more
42 regular and reliable firing. In contrast, during REST experiments, the monkey itself decided what to
43 do (e.g. movement preparation or onset), resulting in a less well-defined behavior and its timing.

TOur results are less significant than those presented in Riehle et al. (2018); we analyze only a subset of the R2G data and
use partially different methods.
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434 The above findings are consistent for the two monkeys, but there are differences concerning
435 the sleepy resting state: For monkey E, firing rates during RSS are higher than during RS, thus closer
46 to the values measured during M, while this is not the case for monkey N. Thus, similar to what
47 we find for the LFP spectra, the distinction between RS and RSS (eyes open vs eyes closed) is more
43 pronounced in monkey E than in monkey N.

9 Network activity

40 During all behavioral states, the network activity of groups of neurons in the motor cortex is
an  characterized by a dimensionality much lower than the maximal possible dimension, i.e., the total
42 number of recorded single neurons. Task-related movements show the lowest dimensionality,
43 expressed by a small normalized participation ratio, while non-movement states show a higher
44 dimensionality. Accordingly, neuronal firing during rest is less coordinated than during other states,
45 as indicated already by the narrower covariance distribution centered at zero. These findings agree
w6 well with Mazzucato and La Camera (2016); Gao et al. (2017) who compare stimulus-evoked and
47 ongoing neuronal activity, assuming M and TM to represent the evoked activity, and RS and PP the
45 ongoing activity. The low normalized participation ratio of less than 0.1 during TM (Figure 4) shows
49 that the neural state space dynamics of the reach-to-grasp movement can be reconstructed from
40 only a few principal components. Given the number of observed SUs (see Table 1), this corresponds
451 to a neural state space dimensionality of approximately 7-13. In contrast, the ongoing activity
42 during RS and PP is of significantly higher dimensionality (%12-17 and ~12-22, respectively) and
43 thus more complex.

454 In accordance with Csicsvari et al. (1999); Peyrache et al. (2012); Dehghani et al. (2016), we
45 also find that putative excitatory and inhibitory population spiking are primarily well balanced.
ass  However, our detailed time-resolved analysis, i.e., calculating the balance in 100 ms bins, uncovers
457 the following particularities. During R2G experiments, the activity alternates between excitation-
45 dominated movement preparation (PP) and inhibition-dominated movement execution (TM). During
49 non-movement states (PP and RS), we find a reduced correlation between putative excitation
40 and inhibition, i.e., a reduced instantaneous balance of non-movement states. In addition, the
461 instantaneous balance is anti-correlated to the dimensionality, particularly strongly in REST.

462 We suspect that the relatively high instantaneous balance during movements and sleepy rest
463 is partially an effect of an enhanced number of transient changes in population spiking in these
464 States as compared to the other states (Fig. 5B). A prominent increase in firing as observed during
465 Movements is an unambiguous type of activity change and is thus easy to capture by correlation
466 Measures. Such transient increases correlated in time between two neuronal populations could
47 result from the recurrent coupling between excitatory and inhibitory neurons (see Appendix 1). In
468 addition to the transients in population activity, we find hints of a prevalence of non-stationarities
49 (e.g. transients) in the SU firing during movements and sleepiness, but not during rest (Appendix 1
a0 Fig. 2). Strong transient comodulations of spiking activities amplify correlations between neurons,
47 which in turn decrease the dimensionality of network activity. Therefore, transient changes in
42 firing rates might also be partially responsible for the reduced dimensionality during task-related
473 movements.

a2 Influence of pre-processing and critical assumptions

475 Specificities of extracellular recordings and the following pre-processing steps impose particular
476 biases on the resulting statistics and their interpretation. Firstly, the spike sorting procedure,
477 necessary to identify single cells recorded on the same electrode, is well-known to be problematic
a8 (Lewicki, 1998; Quian Quiroga, 2012). Additional limitations on minimal SNR and firing rate of a
479 sorted unit to be considered for statistical evaluation contributes to the undersampling of sparsely
40 firing neurons and thus biases results towards highly active neurons. This is often referred to as the
431 problem of "dark matter" of the brain (Shoham et al., 2006).

482 Secondly, the separation between putative excitatory and inhibitory neurons based on the widths
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43 of their spike waveforms is also known to have several limitations (Bartho et al., 2004; Kaufman
a4 etal, 2010, 2013; Peyrache et al., 2012; Dehghani et al., 2016; Peyrache and Destexhe, 2019). Some
45 pyramidal neurons, in particular when recorded close to the axon, exhibit narrow waveforms. Still,
a6 it was shown that over 10% of M1 interneurons have intermediate or broad waveforms (Kaufman
a7 et al., 2010; Vigneswaran et al., 2011; Kaufman et al., 2013). When discussing the differences
45 between the two populations, it should be kept in mind that not all narrow-spiking units are
49 inhibitory and only a part (majority) of broad-spiking SUs are excitatory (Peyrache and Destexhe,
a0 2079). Nevertheless, our separation yields higher average firing rates for putative inhibitory neurons
41 which agrees well with what is known from the literature (Peyrache et al., 2012; Dehghani et al.,
42 2016; Kaufman et al., 2010).

493 Thirdly, our study relies on the behavioral segmentation of REST recordings which is highly
494 subjective and has rather poor temporal resolution (~1s) in comparison to the recorded neuronal
495 activity (~1ms). Nevertheless, our behavioral classification seems to be accurate in terms of
496 separating sets of dissimilar neurophysiological network states, as reflected by differences in state-
47 resolved LFP spectra, see above. Still, our definitions of the behavioral states are based on visual
498 inspection and may not be as precise. For example, the identification of "whole body and limb
49 movements" in the video recording does not account for the fact that, due to the exact placement of
s the Utah array, our recordings are particularly sensitive to contra-lateral arm movements. Likewise,
sor  the RS classification is simply based on the exclusion of movements with the additional criterion
so2  Of "eyes open". Compared to the very precise behavioral classification in R2G recordings?, the
so3 behavioral segmentation of REST recordings is vague and allows for a much broader range of actual
s« behaviors.

505 Finally, reliable covariance estimation necessitates very long data slices (Cohen and Kohn, 20117).
sos  To satisfy this requirement, in R2G data we had to concatenate slices from 6 consecutive trials
so7  into 3's slices for the analysis of covariance and participation ratio. Thus, a single PR value results
sos from averaging over six independent recording periods in contrast to the continuous REST data.
sos  However, this approach can be justified by our observation of a low inter-trial variability obtained
sio for 0.5s slices of the R2G data.

sn  Towards experimental data for spiking model validation

sz Modeling studies focusing on spiking-neuron networks often claim to model an "idle" state, i.e.
si3 without any relation to functional aspects, characterized by sparse asynchronous irregular spiking
s and balanced input statistics (van Vreeswijk and Sompolinsky, 1996, Amit and Brunel, 1997; van
s1is  Vreeswijk and Sompolinsky, 1998; Brunel, 2000; Kumar et al., 2008; Voges and Perrinet, 2010, 2012;
sis  Potjans and Diesmann, 2014). To isolate the ongoing and recurrently generated activity, many of
s17 - these studies consider stationary states without any transient network activation due to external
sis inputs. In this case single-neuron and population firing rates fluctuate around some mean activity.
s19 However, data collected in behavioral experiments often contain transient firing rate fluctuations
s20 on the level of both single units and whole populations. For motor cortex recordings, such firing
s rate changes typically occur during movements, which has been shown here and in many other
s22  studies (Nawrot et al., 2008; Rickert et al., 2009; Churchland et al., 2010; Riehle et al., 2013, 2018).
s23 We find that this disagreement can (mostly) be avoided by considering resting periods (RS) in REST
s24  recordings only. Using non-movement epochs (PP) during behavioral tasks yields results that are
s2s  more similar to RS in terms of network firing properties, but the SU variability is still different
s6  (higher for CV2, and lower for FF). A comparison to inappropriate data sets could lead to erroneous
527 conclusions on model parameters and the mechanisms that shape the network dynamics. Hence,
s28  network models that claim to mimic an idle state in terms of SU and network activity should ideally
529 be validated against resting state data.

2For example, PP is defined as 500 ms after CUO-OFF when the monkey is forbidden to move, and constraining the analyzed
data to only successful trials ensures that the monkey was focused on the upcoming cue to perform the task.
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s Balance and correlations

s31 - Another typical claim of network simulations is the assumption of a balanced state, see above.
s2 The modeling literature discusses different types of balance (Deneve and Machens, 2016). Many
s33 studies assume a cancellation of excitation and inhibition in the input to neurons based on a balance
s between the strength and number of excitatory and inhibitory afferent connections (Poil et al., 2012).
s35 Perfect balance in this context corresponds to a critical point, where network dynamics exhibits
s  avalanche-like behavior (Beggs and Plenz, 2003). This static notion of balance purely relies on the
s7 network structure. In contrast, other studies describe a more or less tight "dynamical balance"
s3  (van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997; van Vreeswijk and Sompolinsky,
s39  1998; Brunel, 2000), where excitatory and inhibitory inputs cancel each other at each pointin time
s«0  (Renart et al., 2010). The latter cancellation is caused by excess inhibitory feedback (Tetzlaff et al.,
sat - 2012) and, in excitatory-inhibitory networks, is accompanied by correlations between excitatory
s22 and inhibitory spiking (Renart et al., 2070). These correlations can be quantified on the level of
se3  neuronal output. Therefore, we here study balance based on the correlation between population
se4  activities.

545 Our observation of a reduced instantaneous balance during resting state compared to other
se6  States at first sight seems to argue against model validation with RS data. However, the balanced
se7  State does not necessarily rely on instant tracking between excitatory and inhibitory population
ses  activities. What it demands instead is a cancellation in the input to each single neuron, which
se9  does not uniquely define a correlation structure between outputs (Helias et al., 2014). Deviations
sso  between population activities can indeed be organized such that their net effect to the summed
ss1 input to single neurons cancels out (Tetzlaff et al., 2012; Baker et al., 2019). Furthermore, one
ss2  should keep in mind that we investigate a rather large time scale, and the apparent reduction of
ss3 balance could be an effect of fewer transient activities contributing to the correlation between
ssa  excitatory and inhibitory population activities during rest. Nevertheless, we find principally well-
sss  balanced population firing in all behavioral states and we show that spiking during rest is neither
sss  dominated by excitation nor by inhibition which indicates that RS periods are in agreement with
ss7 - balanced network models.

558 Related to balance, modelers often assume uncorrelated or weakly correlated external inputs
ss9  to local networks, but it is impossible to determine the amount of correlations in the neuronal
seo  input with extracellular recordings. Strongly correlated inputs, attributed to sensory (Decharms and
st Merzenich, 1996) or movement processing (Murphy et al., 1985), may boost the modulation of firing
s rates on the population level. This could lead to higher pairwise covariances and subsequently lower
sss  dimensionalities than expected in artificial networks with a well controlled input structure. We find
se4  that such a decrease in dimensionality, is, for example, particularly pronounced during task-induced
ses  movements. This again points out the necessity to separate between rest and movements in order
ses  to avoid potential unrealistic mismatch between input and output statistics of spiking models.

ss7  Heterogeneity of neuronal networks

sss  Another point is the remarkable heterogeneity of neuronal activities in experimental recordings:
se0  SUs show a broad range of firing rate profiles and spiking (ir-)regularities, as well as distinct activity
s70  modulation related to behavioral state changes. Neuronal network studies mostly are able to
s7 - reproduce this heterogeneity. Single-neuron properties (e.g. time constants, synaptic weights)
s and connectivities are typically given as parameter ranges described by certain distributions de-
s73 rived from experimental measurements (Kumar et al., 2008; Voges and Perrinet, 2012; Potjans
s74 and Diesmann, 2014). Depending on the widths of these distributions (and other features) the
s75  resulting activities can and should be adapted to the heterogeneity in experimental data (Dahmen
s, et al., 2079). An advantage of heterogeneous network activity is that it enhances the stability
s77 - of the "idle" state (Denker et al., 2004) which is essential for real-world neuronal networks that
s73 need to be able to operate under various conditions. For example, the different behavioral states
s79  analyzed here demonstrate that the motor cortex operates in similar dynamical regimes for various
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ss0  kinds of behaviors, including movements and sleepiness. The stability range of network models
ss1 can be further increased by including more real-world features like homeostatic mechanisms (e.g.
ss2  adaptation, short term plasticity) which also support a high (temporal) heterogeneity.

583

ss¢  In summary, we encourage modelers to (continue to) incorporate the heterogeneity of real-world
sss  neuronal activities and we conclude that the validation of network models that claim to simulate idle
sss  states should be based on resting state data. Still, even when considering REST recordings without
ss7 - any task or stimulus, it is necessary to separate out the "pure" resting state periods because they
sss  show distinct statistical properties: lower firing rates, fewer transient activities, smaller covariances
ss0  and thus a higher dimensionality.

s0 Definition of behavioral states

s1  The rather vague classification of behavioral states in REST recordings is based on observing the
s2  monkey in contrast to the precise classification in R2G experiments which relies on external cues.
s3  The consequence of this difference in precision is clearly visible on the level of the spiking activity
se4  statistics: In addition to the higher spike time irregularity and the higher (broadly distributed)
sos  spike count variability in REST compared to R2G, REST states also show a less clear state-specific
so6  difference in the dimensionality results.

597 In addition, there is the problem of different time scales (i.e., slice lengths): 0.5s as forced by
s  the R2G settings versus the heuristically chosen 3s in REST. Thus, some comparisons between
se9  single behavioral states of these two data types might be unfair, but we still observe the expected
s0 commonalities in the states with (TM, M) versus without movements (PP, RS): Non-movement states
e1 show generally lower firing rates, a higher dimensionality, and a lower instantaneous balance.

«2 Eyes open vs closed

63 The sleepy resting state RSS, however, turns out to be a special case. As already mentioned,
s4 the LFP spectra during RSS and the firing statistics of RSS are monkey-specific: in monkey E, the
s distinction between RS and RSS is more pronounced than in monkey N. However, concerning both
es dimensionality and instantaneous balance, the RSS distributions of the monkeys are similar. In
¢07 addition, mean dimensionalities are closer to the ones obtained for M than for RS, even though RSS
608 IS @ hon-moving state. In accordance with observations that the motor cortex can show distinct
609 reactions to visual stimuli (Wannier et al., 1989; Riehle, 1991), we conclude that the distinction
s10 between eyes-open and eyes-closed is important even in the motor cortex, since there is an impact
¢11 on the neuronal activity. RS and RSS can be distinct physiological states in a given monkey: monkey
612 E seems to be really drowsy when its eyes are closed while monkey N might be simply bored. This
¢13  example also shows the importance of verifying the result of the visual behavioral segmentation
¢4 with the LFP spectra of the resulting states.

sis  Alternative classification methods

¢16 There are other possibilities for the behavioral segmentation of REST recordings. One idea would
¢17 be an automatic decoding of behavioral state purely based on SU firing properties by means of
¢1s machine learning methods, e.g., Pandarinath et al. (2018). Given that approximately 50% of all
e19  SUs exhibit a strong correlation between firing rate modulations and behavior, such an approach
s20 would probably be possible but not necessarily straight-forward. If there were enough data to
¢ define an appropriate learn set, a machine learning algorithm could, for example, identify SUs that
62 consistently increase or decrease their firing rate with specific state changes. Such an approach,
63 however, is beyond the scope of this study. Another idea would be to increase the temporal
64 precision of the visual segmentation by means of an automated detection of transient neuronal
625 activities. Yet, the detection of transient activities in itself is not trivial (/to et al., 2019), it does not
626 allow to distinguish between RSS and M, and particularly in our data a 3 s long movement epoch
627 contains several such transients in an unknown frequency. We do not pursue this approach, as it is
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628 again beyond the scope of this study.

s29 Resting state as superposition of sub-network activities

630 An interesting hypothesis emerges from the comparison of our study to resting state studies
631 based on large-scale measurements. Similar to the observation of activations and deactivations
62 Of specific brain areas in fMRI studies (Biswal et al., 1995; Fox and Raichle, 2007; Raichle, 2009;
633 van den Heuvel and Hulshoff Pol, 2010; Deco et al., 2011), we observe systematic in- and decreases
64 in the spiking activity of numerous SUs. Large-scale studies conclude that spontaneous brain
e3s activity emerges from a set of resting state networks (Fox and Raichle, 2007; Raichle, 2009; van den
636 Heuvel and Hulshoff Pol, 2010; Deco et al., 2011), i.e., from a sequence of consistently re-occurring
637 spatio-temporal activity patterns that resemble task-evoked activity, but are present during rest
e3s (Vincent et al., 2007; Fox and Raichle, 2007; van den Heuvel and Hulshoff Pol, 2010). One could
630 thus hypothesize a similar phenomenon on the microscopic level of spiking activity: a resting state
s0 composed of the activities of several sub-networks of single neurons in the motor cortex. During
61 movements, one could imagine a convergence of the neuronal activity into specific networks (cf.
s2 (Fox and Raichle, 2007; Mazzucato and La Camera, 2016)). The larger spatial spread of the activity
643 Observed during RS compared to M (see Appendix 2) would be in line with the above hypothesis,
64 assuming that a superposition of many spatially embedded networks yields an enlarged spatial
ss extent than a single such network (cf. Fig. 1 in Appendix 2). Likewise, the high dimensionality
ss6 Observed during RS agrees well with the hypothesis of a superposition of several sub-networks.
647

ess  Yet another question concerns the definition of "rest" in general: how to define it in other cortical
s49 areas than motor cortex, e.g., in sensory systems? For the auditory system one would intuitively
60 assume that silence or white noise as auditory input represents the resting condition. Similarly,
es1  for the visual system one could use a uniform or noise background as visual input. The choice of
62 "eyes-closed" as rest condition would, however, represent a different behavioral state compared to
653 our assumption of sleepy rest being a qualitatively different condition.

654 Given all the issues concerning the definition of "rest" and the behavioral segmentation, together
ess  with the superposition of RSNs on the scale of brain areas, one could claim that it is futile to attempt
ess  to characterize the spiking activity during an assumed resting state. However, our results clearly
es7 demonstrate a set of significant differences between the spiking activity in motor cortex during
ess  "rest" as compared to other behavioral conditions.

s Conclusions

es0  We demonstrate that spiking activity in monkey motor cortex during rest differs significantly from
st other spontaneous and task-related behavioral states, for example sleepiness and movements.
62 The main characteristics of the resting state activity are low average firing rates combined with a
e63  high variability of single-unit spiking statistics, and a pronounced complexity as indicated by a less
es4 coordinated firing which results in a higher dimensionality of the network activity. We show that
6ss and explain why neuronal network models should be validated against resting state data, aiming to
ess enhance the trend towards realistic network models that account for the heterogeneity in neuronal
67 data. We hope that our study is just the beginning of the characterization of "rest" on the level of
ess  spiking neurons. More specific analysis is needed to quantify transient activities, their relation to
69 the balance between exitatory and inhibitory population activities, and to provide an automated
e70 algorithm for the behavioral segmentation of REST recordings.

& Materials and Methods

62 We first describe the two types of experimental recordings analyzed in this paper: resting state
¢73  (REST) and reach-to-grasp (R2G) data, the latter obtained during a behavioral task. Then, we explain
674 the experimental procedure and the pre-processing of all data types with a particular focus on the
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e7s  REST recordings and their behavioral classification. Finally, the measures calculated to characterize
e76  different behavioral states are listed and explained.

s Experimental paradigm and recordings

678 Two adult macaque monkeys (Macaca mulatta), female (monkey E) and male (monkey N), partici-
e79 pated in two distinct behavioral experiments: resting state (REST) and reach-to-grasp (R2G). Monkeys
ss0 were chronically implanted with a 4x4 mm? 100 electrode Utah Array (Blackrock Microsystems, Salt
st Lake City, UT, USA) situated in the hand-movement area of (pre-)motor cortex. Spiking activity and
62 LFP were recorded continuously during an experimental session, with sampling frequency of 30 kHz.
633 Details on surgery, recordings and spike sorting, as well as on the R2G settings are described in
esa  Riehle et al. (2013, 2018); Brochier et al. (2018)

685 During a resting state session, the monkey was seated (but not fixated) in a primate chair. The
ess Chair was positioned so as to prohibit the animal from reaching any objects. There was neither a
67 particular stimulus nor any task, the monkey was free to look around and move spontaneously.
ess In addition to the registration of brain activity, the monkey’'s behavior was video recorded and
es9  synchronized with the electrophysiology. For each monkey two such sessions were recorded and
s0 lasted approximately 15 min for monkey N and 20 min for monkey E.

691 In the R2G experiments, monkeys were trained to perform an instructed delayed reach-to-grasp
s2 task to obtain a reward, see Fig. 1B. The monkey had to self-initiate a trial by closing a switch (TS).
63 After 800 ms a CUE-ON signal provided some task-related information. 300 ms later, the CUE signal
e94 was switched off which defined the start of the preparatory period, during which the monkey was
es supposed to sit still. One second after the CUE-OFF, a GO signal provided the complementary
696 task-related information and indicated the monkey to start moving. The monkey had to release the
67 switch (SR) and reach to the target. After grasping the object, the monkey had to pull and hold it
e9s for 500 ms to obtain the reward (RW). Brain activity was recorded together with time stamps of all
690 events within a trial.

700 Table 1 lists all single recording sessions for both REST and R2G experiments. Typically, a
701 REST recording was performed subsequent to an R2G recording session. Only the E2 session was
702 recorded directly before an R2G session which is probably the reason for the missing RSS intervals.
703 The monkey was rather twitchy, impatiently waiting for the R2G tasks, because R2G experiments
704 include a reward while there was no reward during REST recordings.

s Pre-processing

706 The waveforms of potential spikes were sorted into the SUs offline and separately on each electrode
707 using the Plexon Offline Spike Sorter (version 3.3, Plexon Inc., Dallas, TX, USA), see Riehle et al.
708 (2018). Synchrofacts, i.e., spike-like synchronous events across multiple electrodes at the sampling
700 resolution of the recording system (1/30 ms) (Torre et al., 2016), were then removed. Sorted units
710 were separated into broad- and narrow-spiking SUs representing putative excitatory and inhibitory
711 neurons, respectively. The separation was achieved by thresholding the spike-widths distribution
712 (Bartho et al., 2004; Kaufman et al., 2010, 2013; Peyrache et al., 2012; Dehghani et al., 2016) in the
713 following way. For a given monkey, average waveforms from all SUs recorded in all considered
74 sessions (REST and R2G) were collected. Based on the distribution of spike-widths (time interval
715 between trough and peak of a waveform), thresholds for "broadness" and "narrowness" were
716 chosen such that the values in the middle of the distribution stayed unclassified (Fig. 7). For monkey
717 N, spikes with a width shorter than 0.4 ms were considered to be narrow (ns—narrow-spiking SUs,
718 putative inhibitory neurons), whereas spikes longer than 0.41 ms were considered to be broad
79 (bs—broad-spiking, putative excitatory neurons). For monkey E, spikes narrower than 0.33 ms were
720 considered as ns SUs and spikes broader than 0.34 ms were considered as bs SUs. The difference
721 between monkeys was due to different filter settings during the recordings.

722 Next, a two step classification was performed. For a given session, the thresholds were applied
723 to the averaged SU waveforms (first preliminary classification). Secondly, the single waveforms of all
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Figure 7. Separation between broad-spiking (bs) and narrow-spiking (ns) single units (SUs). (A) Spike-width
distributions calculated from the average spike widths of all REST and R2G recording sessions for monkey E and
monkey N. The two vertical lines indicate the thresholds for ns (0.33 ms and 0.4 ms for monkeys E and N,
respectively) and bs units (0.34 ms and 0.41 ms for monkeys E and N, respectively). (B) Exemplary separation
between ns (red) and bs {blue) units for the first REST recording of monkey N (N1). SUs between the thresholds
are left unclassified (grey), as well as all SUs with a consistency smaller than 62%.

724 SUs were thresholded and a consistency measure ¢ was calculated per SU: the percentage of SU
725 single waveforms preliminarily classified as broad. If ¢ > 0.5, a SU was classified as bs; if ¢ < 0.5, a SU
726 was classified as ns (second preliminary classification). Typically, these two classifications yielded
727 inconsistent results for some single units, e.g., a SU with majority of spikes slightly narrower than
728 0.4ms has been classified (based on its average waveform) as bs SU. During an iterative procedure
729 Wwe increased the minimal required consistency until there were no more contradictions in the
730 results of both preliminary classifications. SUs with high enough consistency were then declared
731 classified as putative excitatory or inhibitory. SUs whose mean waveform’s widths fell between two
732 thresholds or whose consistency was too low were declared unclassified.

733 Only SUs with signal-to-noise ratio (SNR, see Hatsopoulos et al. (2004)) of at least 2.5 and a
73« minimal average firing rate of 1 Hz were considered for the analysis to ensure enough and clean
735 data for valid statistics.

2 Behavioral Segmentation

737 Based on video recordings, each REST session was segmented according to monkey’s behavior.
738 Three states were defined with single-second precision as follows: resting state (RS)—no movements
739 and eyes open; sleepy resting state (RSS)—no movements and eyes (half-)closed; and spontaneous
740 movements (M)—accounting for movements of the whole body and limbs (Fig. 1A). If a movement
41 or a RSSinterval began during a particular second, this whole second was classified as M or RSS,
742 respectively. Eye movements and minor head movements were allowed during RS. All other types
743 of behaviour (e.g., strong isolated head movements) and periods for which it was not possible to
744 Clearly classify the monkey’s behavior (e.g., due to a lack of visibility) were considered as unclassified
75 and excluded from analyses. To increase the reliability of classification, behavioral scoring for each
746 Session was performed by two independent observers, and the results were merged later.

747 Behavior classification in R2G recordings was based on the events registered throughout the
748 experiment, see Sec. Materials and Methods: Experimental paradigm and recordings. Two periods
749 within a trial (see Fig. 1B) were considered: preparatory period (PP), defined as 500 ms after the
750 CUE-OFF (first half of the preparatory delay, no movements), and task-related movement (TM)—
751 500 ms after SR-ON, including grasping. Due to differences in performance speed of each monkey,
752 this period was defined as: [SR-ON, SR+500 ms] for monkey E, and [SR-150 ms, SR+350 ms] for
753 monkey N. All successful trials were used.

754 Since the amount of data strongly differs between behavioral states in REST, we used data slices
755 of equal length, mostly 3 s slices, to have comparable statistics. The choice of slice length represents
75 @ compromise between different factors: a) the slice length cannot exceed the typical duration of
757 each behavior (shortest for movement), b) the slice length should be as long as possible for reliable
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758 estimation of covariances within each slice, c) to average across slices, we need as many slices as
759 possible. Following these arguments, each behavioral segment was cut into as many continuous
760 slices as possible. For example, if a REST segment was 7's long, it was separated into two slices
761 0f 3s and the remaining 1s was not considered for the analysis. In the R2G data, the slice length
762 for the 2 behavioral states was 0.5 s by definition, see above. When directly comparing REST and
763 R2G data, we either considered 0.5 s slices for the REST data (comparison of firing statistics) or we
764 concatenated six 0.5 slices of the R2G data to 3 s slices (analysis of covariances and balance).

7s  LFP Spectra

766 The spectral density of the LFP (sampling frequency of 1000 Hz) in different behavioral states in REST
77 and R2G data was estimated with Welch’s method provided by Elephant (https://python-elephant.
76 0rg). We considered 3s slices for the REST and 0.5s slices for the R2G data. The spectra shown
760 in Fig. 1 were obtained by averaging over single spectra from state-specific slices of all respective
770 recordings. We used a Hanning window of 1's and an overlap of 50% for the REST data while the
771 R2G spectra were estimated with a Hanning window of 0.3 s with an overlap of 50%. Additionally, an
772 artifact in session N1—high-amplitude synchronous peak on all recording channels—was removed:
773 it was replaced by the average of the remaining signal.

7« Data analysis

775 To characterize and compare different behavioral states, we employed a set of analysis tools. We
776 quantified the correlation between neuronal firing and behaviour and characterized firing properties
777 of SUs, as well as the coordinated firing of pairs of SUs. We also calculated the dimensionality
778 of spiking and the balance between time-resolved putative excitatory and inhibitory population
779 counts.

780 Pre-processing and data analyses were performed in Python, version 2.7, with the Elephant pack-
731 age (https://python-elephant.org). Since our distributions were typically non-Gaussian, significance
732 Of differences between them was assessed via Kruskal-Wallis tests for multivariate comparisons
753 (KW, non-parametric alternative to a one-way ANOVA), with significance level « = 0.001. Multiple
78¢  comparisons were corrected for with a Bonferroni-Holm correction.

785 For visualizations of distributions obtained for different behavioral states, we used notched
76 boxplots. The line in the center of each box represents the median, box’s area represents the
787 interquartile range, and the whiskers indicate minimum and maximum of the distribution (outliers
758 excluded).

79 Behavioral correlation

790 For each REST session, we defined a state vector based on the behavioral segmentation, see
791 Sec.Materials and Methods: Behavioral Segmentation. Each entry represented 1 s of the recording
72 and was set to -1 for RS, to -2 for RSS and to 1 for M. To assess the relation between SU activity
73 and monkey's behavior, the FR (in 1s bins, no overlap) of each SU was correlated (Spearman
794 rank correlation) with the modified state vector of a given session: entries for RSS were zeroed.
795 Only pairs of entries in which the modified state vector was different from zero were considered.
796 This procedure resulted in a value which we called behavioral correlation: BC € [-1,1], and the
797 corresponding p value (indicating statistical significance if p < 0.001, with correction) for each SU,
78 see Fig. 2B. Positive BC indicated that the FR increased during movements or decreased during rest,
799 and vice versa. We investigated the distributions of BC values separated between ns and bs SUs,
so  See Fig. 2C.

801 For a substantiation of these results, we additionally performed Kruskal-Wallis tests on all three
s2 behavioral states defined in REST (M, RS, and RSS), separately for each SU, to check for significant
s03 changes in the SU firing rates. Note that this method does not provide any quantification of
soa amplitude of the correlation similar to BC.
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805 For both tests described above, we calculated the percentage of SUs that changed their FR
sos  significantly (after correction) with changes in the behavioral states, see Tab. 2. This procedure was
sy performed for all SUs and separately for ns and bs neurons.

808 Next, we again applied Kruskal-Wallis tests for pairwise comparisons between three behavioral
so0  States per SU, asking for a significant in- and decreases in firing. This analysis was performed on
g0 3slong data slices. Tab. 3 lists the percentages of all SUs which either significantly increased or
g1 decreased their FR in one state with respect to another.

sz Neuronal firing in REST and R2G states

s13  To compare the SU firing properties in behavioral states from different experiments, we used 0.5 s-
g4 long slices of both REST and R2G recordings. In REST, the single seconds at the transitions from one
s15  State to another were excluded. For each time slice of each SU, we estimated the average firing rate
s16  FR and the local coefficient of variation CV2 (Ponce-Alvarez et al., 2010; Voges and Perrinet, 2010;
s17  Riehle et al., 2018), and per SU across slices the Fano factor FF (Nawrot et al., 2008; Nawrot, 2010;
g1z Riehle et al., 2018). For the REST recordings, we also calculated the commonly used coefficient of
s19  variation CV (Shinomoto et al., 2003; Ponce-Alvarez et al., 2010; Voges and Perrinet, 2010), shown
s20 in the additional Figure in Appendix 1 Sec. Transient activities.

821 CV and CV2 are based on the inter-spike-interval distribution of a SU (Shinomoto et al., 2003;
s2 Ponce-Alvarez et al., 2010; Voges and Perrinet, 2010; Riehle et al., 2018). They characterize the
s23  (ir-)regularity in neuronal firing. A value close to zero indicates regular spiking, a value of one
224 indicates Poissonian spiking, and a value above one even more irregular firing. The CV2 corrects for
s2s transient firing rate changes which yield inappropriately high CV values (Ponce-Alvarez et al., 2010;
826 Voges and Perrinet, 2010). The FF describes the variability in SU spike counts across trials (R2G) or
827 time slices (REST) (Nawrot et al., 2008; Nawrot, 2010; Riehle et al., 2018).

828 We compared the FR and CV2 values obtained for each SU within each slice of RSS, RS, M, TM and
s29 PP states in two different ways, see Fig. 3. On the one hand, we averaged over time slices/trials to
g0 represent the variability with respect to SUs. On the other hand, we averaged the results obtained
s31 for each data slice/trial over SUs in order to analyse the variability of our measures in time. The
s2  significance of the differences between the behavioral states was assessed with a Kruskal-Wallis
g3 test including a Bonferroni-Holm correction, both when comparing all 5 states and in pairwise
84 Ccomparisons.

g5 Covariances and dimensionality

836 10 measure the joint variability in rate modulation, we calculated the pairwise spike-count co-
837 variances (COV, Cohen and Kohn (2011); Dahmen et al. (2019)). REST data were cut and R2G data
g concatenated into 3 s slices (state-resolved) and binned into 100 ms intervals. The bin size of 100 ms
839 Was a compromise between obtaining enough bins to calculate covariance values (given a slice
a0 length of 3s), considering enough spikes for reliable estimation of covariance, and using a time
s scale appropriate for the examination of rate modulations. For R2G data this procedure implied
s2 that data from 6 consecutive trials contributed to a single COV value.

843 The COV between spike trains i and j was defined as:

(b; —m;, b, —m;)

i J

COV(ij) = ————

) (M

sas  With b, and b,—binned spike trains, m; and m; being their mean values, I the number of bins, and
a5 (x,y) the scalar product of vectors x and y. Thus, for each 3 s slice of a particular state we obtained
ss @ COV matrix M € RVsu*Nsu with Ng,—number of SUs.

847 Based on the COV matrices, we calculated the participation ratio PR to characterize the dimen-
sas  sionality of activity in different behavioral states, see Mazzucato and La Camera (2016); Gao et al.
sa0  (2077). Eigenvalue decomposition of COV matrix M yields N, eigenvalues 4 with corresponding
ss0  eigenvectors v, such that My, = A,v,. The eigenvalues were used to calculate the participation ratio
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Figure 8. Participation ratio to characterize the dimensionality. (A) Sketch showing relation between the
eigenvalue spectrum and PR. In case of first N eigenvalues explaining equal amounts of variance and the rest
vanishing, the PR equals N (black vertical lines). If a few eigenvalues are much higher than the others, the
resulting PR decreases (dark grey crosses). If, on the contrary, a uniformly distributed random value is added to
each eigenvalue from the first case, the calculated PR becomes higher (light grey circles). Experimental data is
typically a mixture of the second and the third case. Continuous traces show exemplary results for a single 3 s
data slice of RS (green) and M (pink) in session N1. (B) Participation ratio, calculated with different bin sizes (50,
100, 200 ms) in exemplary session N1.

g1 of the neuronal dynamics:

OL o)
>
82 The PR thus quantifies how many eigenvectors are necessary to explain a significant part of variance
852 in dynamics described by M, see Fig. 8A.
854 The PR is low if most of the variability is captured by the first few eigenvectors. A large PR
sss  indicates that many eigenvectors are necessary to capture the dynamics—a sign of high complexity.
sse  In order to test the robustness of our results, we performed our analysis with different bin sizes.
87 The result is shown in (Fig. 8B). Here, all bin sizes revealed the same PR-dependent ordering of
sss  behaviors. This suggests that our results are robust to the choice of bin size.
859 The value of the PR depends on the number of SUs present in the analysis: It can take values
ssoc 1 < PR < Ng;. In order to make the PRs comparable across recording sessions, we normalize with
g1 the number of SUs measured in the respective experiment, PR’ = PR /N, thus giving rise to values
s2 inarange [0, 1]. The box plots in Fig. 4 visualize the distributions of normalized PRs obtained in
sz all non-overlapping 3s time slices from all recording sessions of a given type (REST or R2G) per
g4 Mmonkey. The time-resolved visualization of PR" in panel B of the same Figure was calculated in a
ses  sliding-window fashion with 3 s slices and 2's overlap. Each data point in this plot is located at the
sse  center of the respective window.

PR

&7 Balance

sss  The multiscale balance between putative excitatory (bs SUs) and inhibitory (ns SUs) population
seo  firing was examined similarly to the procedure proposed in Dehghani et al. (2016). We considered
s70  timescales from 1 msto 10s. For a given timescale, pooled spikes from bs and ns units were binned
snn  and z-scored separately, resulting in bs and ns population activities (whole recording, no separation
872 into behavioral states). Then, the putative inhibitory population activity was subtracted from the
&7 putative excitatory activity (see Fig. 5A). If this difference was close to zero, i.e., if pooled ns and bs
s74  Spike counts were nearly identical, the network activity was called balanced. If this was the case for
s7s  multiple time scales (i.e., bin sizes), it was called multiscale balance.

876 Since we observed some deviations from balance for bin sizes larger than 30 ms, we quantified
877 these deviations in a state-resolved manner. For each REST and R2G session of a given monkey,
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g7z We binned the 3 s time slices (concatenated from six consecutive trials of 0.5s for R2G data) into
&79 100 ms bins. Next, we applied two methods to quantify the balance between population activities.
830 Firstly, the same as for the multiscale balance, we z-scored the population activities, using
g1 the respective mean and standard deviation of the whole recording (not state-specific). Then, we
ss2 Calculated, separately for each state, the difference between the z-scored bs and ns population
ss3  activity of each 100 ms bin in each time slice: A negative value indicated a domination of ns activity
s«  While a positive value meant that the bs activity was higher. Fig. 5C shows the corresponding
sss  State-resolved histograms.

836 Secondly, we calculated the Spearman rank correlation between raw bs and ns population
ss7  activities for each time slice: The higher the correlation p(bs, ns), the more strict the instantaneous
sss  balancing between the ns and bs populations (cf. (Renart et al., 2010; Tetzlaff et al., 2012)). The
ss0  State-resolved results are presented in box plots (Fig. 6A).

890 To investigate the relationship between balance and dimensionality, we calculated the Spearman
g1 rank correlation between p(bs, ns) and PR’ for each monkey, pooled over all REST and R2G sessions,
82 respectively (Fig. 6C, D and Tab. 6).
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0o Appendix 1

1100 Transient activities
1101 To analyze the instantaneous balance, we correlate putative excitatory and inhibitory popula-
1102 tion activities in different behavioral states (sleepy rest RSS, rest RS, and movements M). We
1103 find a significantly reduced correlation {i.e., balance) during RS compared to M for monkey E,
1104 and during RS and M compared to RSS in monkey N, significantly only between M and RSS
1105 (cf. 6A and B). We also observe numerous transient increases in the population spike counts
1106 (Fig. 5B). Such simultaneous peaks contribute to higher correlation values between the two
1107 neuronal populations. The prevalence of this deviations differs between behavioral states.
1108 Fig. 1 and Tab. 1 below show that the distributions of population activities during M {(monkey
1109 N, ns population) or both RSS and M (monkey E, both populations) are characterized by
1110 higher standard deviations than expected from higher mean values. RSS of monkey N shows
11 lower means and slightly higher standard deviations than RS in ns population, pointing to
112 the same conclusion. Both relations serve as footprints of an increased number of narrow
1113 peaks in population spiking during non-resting states.
114 Given the transient peaks in the population spike counts during M and RSS, we suspect the
1115 following relationship between balance and transients in the population activity: Whenever
1116 one of the population activities transiently increases, the other one is forced to do the same
117 due to the recurrent coupling between putative excitatory and inhibitory neurons, yielding
1118 higher correlation value and thus more balance.
session E1 session N1
0.5 1 .
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1119
1120 Appendix 1 Figure 1. Population spiking in REST recordings. Distributions of the population spiking
121 activities calculated in 100 ms bins, separately for each REST session (left column—monkey E,
122 right—monkey N, colors indicate behavioral states, solid lines—bs, dashed lines—ns). Notice different
1123 ranges of the x axes.

32 of 34



1125

1126

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

Session ‘ RSS RS ‘ M

E1 3.67+1.23 | 3.36+0.77 | 476+1.28
7.81+275 | 756 £1.54 | 9.56 +2.49

E2 450+ 0.88 | 6.37+2.38
810+1.84 | 11.31 +4.06

N1 496 +0.86 | 5.79+0.86 | 6.30+0.85
7.88+291 | 8.85+2.29 | 11.68+2.74

N2 571+1.10 | 6.52+1.07 | 743 +£1.14
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Appendix 1 Table 1. Mean values and standard deviations of distributions of population spiking
activities visualized in Fig. 1 above. First line per session: bs, second line: ns population.

Complementary to the above discussed population activity, we now look at the firing
on the level of SUs (considering 3 s time slices), shown in the top row of Fig. 2. We expect
higher firing rates (mean and standard deviation) for states with more transient activities
(M&RSS) which show an increased balance in the population activities. For monkey E, the
reduced balance in RS compared to M (cf. Fig. 6A) coincides with a significant average firing
rate reduction in RS compared to M. However, for monkey N, the reduced balance in M
compared to RSS (cf. Fig. 6B) coincides with a significant firing rate increase in M compared
to RSS. Since SU firing rate cannot be directly related to instantaneous balance, we examine
another feature of firing, namely its regularity. The bottom row of Fig. 2 compares the results
obtained for two different regularity measures, CV and CV2: only CV2 accounts for transient
firing rate changes which typically yield erroneously high CV values (Ponce-Alvarez et al.,
2010; Voges and Perrinet, 2070). Thus, a significant difference between CV and CV2 suggests
the presence of such transient firing rate changes. Indeed, we observe significantly higher
CV during RSS and M. Obviously, this is no proof but only an indication for transient changes
in the firing rates on the level of SU firing during movements and sleepy rest.
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Appendix 1 Figure 2. Transient activities in REST recordings. Box plots of average firing rates (top row)
and two different regularity measures (bottom row) of the three states defined for REST recordings (RSS
in dark green, RS in light green, and M in magenta) of monkey E (left) and monkey N (right). CV2 and CV
characterize the (ir-)regularity in spiking, but only CV2 accounts for transient changes in the firing rates
which typically yield misleadingly high CV values. In both monkeys, CV yields significantly higher values
than CV2 during M and RSS states but not during RS.
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Appendix 2

Spatial activity distribution

The participation ratio quantifies the dimensionality in the network activity space. One could
ask how this relates to the distribution of neuronal activity in physical space. In analogy
to large-scale resting state studies which find widely distributed networks of brain areas
that are particularly active during rest (Biswal et al., 1995; Raichle, 2009; Deco et al., 2011),
we estimated the spatial spread of active SUs in the different behavioral states of the REST
recordings. To this end, we calculated the average spatial distance from each active SU to
the center of mass of the spiking activity during sleepy rest (RSS), rest (RS), and movements
(M). An active SU emitted at least one spike during the respective 3s slice; the center of mass
is given by the average coordinates of all active SUs. We thus characterized the mean spatial
spread of the activity around the center of mass in each behavioral state.

Figure 1 (below) shows the results obtained for our four REST sessions. The distinct
scales on the y-axis are a result of the different implantations of the Utah arrays in the
two monkeys (number and placement of active versus inactive electrodes), see Riehle et al.
(2018). The differences in the spatial confinement of active SUs were small but consistent
across sessions and monkeys. For monkey E, we find that the activity during RS exhibits a
higher spatial spread than during M, even if the difference is only weakly significant (p < 0.01
in session E1 and p < 0.05 in session E2). In monkey N, only the second session shows a
significant difference, namely a larger spatial spread in RS compared to M (p < 0.01). In
summary, we show a tendency of the SU activity during rest to be distributed over a larger
spatial region than during movement, which may relate to higher dimensionality quantified
by PR.
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Appendix 2 Figure 1. Spatial arrangement of active SUs on the Utah array. Box plots of the radial
spatial distance to the center of mass for the two REST recording sessions of monkey E (left panel) and

N (right panel).
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