001     877348
005     20210130005019.0
024 7 _ |a 10.1021/acs.nanolett.9b01485
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a 2128/25023
|2 Handle
024 7 _ |a altmetric:23355435
|2 altmetric
024 7 _ |a pmid:31063385
|2 pmid
024 7 _ |a WOS:000471834900093
|2 WOS
037 _ _ |a FZJ-2020-02155
082 _ _ |a 660
100 1 _ |a Ersfeld, Manfred
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Spin States Protected from Intrinsic Electron–Phonon Coupling Reaching 100 ns Lifetime at Room Temperature in MoSe 2
260 _ _ |a Washington, DC
|c 2019
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591621830_14895
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present time-resolved Kerr rotation measurements, showing spin lifetimes of over 100 ns at room temperature in monolayer MoSe2. These long lifetimes are accompanied by an intriguing temperature-dependence of the Kerr amplitude, which increases with temperature up to 50 K and then abruptly switches sign. Using ab initio simulations, we explain the latter behavior in terms of the intrinsic electron–phonon coupling and the activation of transitions to secondary valleys. The phonon-assisted scattering of the photoexcited electron–hole pairs prepares a valley spin polarization within the first few ps after laser excitation. The sign of the total valley magnetization, and thus the Kerr amplitude, switches as a function of temperature, as conduction and valence band states exhibit different phonon-mediated intervalley scattering rates. However, the electron–phonon scattering on the ps time scale does not provide an explanation for the long spin lifetimes. Hence, we deduce that the initial spin polarization must be transferred into spin states, which are protected from the intrinsic electron–phonon coupling, and are most likely resident charge carriers, which are not part of the itinerant valence or conduction band states.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Volmer, Frank
|0 P:(DE-HGF)0
|b 1
700 1 _ |a de Melo, Pedro Miguel M. C.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a de Winter, Robin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Heithoff, Maximilian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zanolli, Zeila
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stampfer, Christoph
|0 P:(DE-Juel1)180322
|b 6
|u fzj
700 1 _ |a Verstraete, Matthieu J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Beschoten, Bernd
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.9b01485
|g Vol. 19, no. 6, p. 4083 - 4090
|0 PERI:(DE-600)2048866-X
|n 6
|p 4083 - 4090
|t Nano letters
|v 19
|y 2019
|x 1530-6992
856 4 _ |y Published on 2019-05-07. Available in OpenAccess from 2020-05-07.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/877348/files/Spin%20States%20Protected%20from%20Intrinsic%20Electron-Phonon-Coupling.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/877348/files/acs.nanolett.9b01485.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/877348/files/acs.nanolett.9b01485.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877348
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)180322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-06
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21