000877400 001__ 877400 000877400 005__ 20220930130241.0 000877400 0247_ $$2doi$$a10.7566/JPSJ.89.064005 000877400 0247_ $$2ISSN$$a0031-9015 000877400 0247_ $$2ISSN$$a1347-4073 000877400 0247_ $$2Handle$$a2128/25099 000877400 0247_ $$2altmetric$$aaltmetric:82683784 000877400 0247_ $$2WOS$$aWOS:000537748100011 000877400 037__ $$aFZJ-2020-02170 000877400 082__ $$a530 000877400 1001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b0 000877400 245__ $$aLong-Time Correlations in Single-Neutron Interferometry Data 000877400 260__ $$aTokyo$$bThe Physical Society of Japan$$c2020 000877400 3367_ $$2DRIVER$$aarticle 000877400 3367_ $$2DataCite$$aOutput Types/Journal article 000877400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1592488700_22884 000877400 3367_ $$2BibTeX$$aARTICLE 000877400 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000877400 3367_ $$00$$2EndNote$$aJournal Article 000877400 520__ $$aWe present a detailed analysis of the time series of time-stamped neutron counts obtained by single-neutron interferometry. The neutron counting statistics display the usual Poissonian behavior, but the variance of the neutron counts does not. Instead, the variance is found to exhibit a dependence on the phase-shifter setting which can be explained by a probabilistic model that accounts for fluctuations of the phase shift. The time series of the detection events exhibit long-time correlations with amplitudes that also depend on the phase-shifter setting. These correlations appear as damped oscillations with a period of about 2.8 s. By simulation, we show that the correlations of the time differences observed in the experiment can be reproduced by assuming that, for a fixed setting of the phase shifter, the phase shift experienced by the neutrons varies periodically in time with a period of 2.8 s. The same simulations also reproduce the behavior of the variance. Our analysis of the experimental data suggests that time-stamped data of single-particle interference experiments may exhibit transient features that require a description in terms of non-stationary processes, going beyond the standard quantum model of independent random events. 000877400 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000877400 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1 000877400 588__ $$aDataset connected to CrossRef 000877400 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b1 000877400 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b2 000877400 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b3 000877400 7001_ $$0P:(DE-HGF)0$$aDenkmayr, Tobias$$b4 000877400 7001_ $$00000-0002-6568-6045$$aSponar, Stephan$$b5 000877400 7001_ $$00000-0001-5175-0408$$aHasegawa, Yuji$$b6 000877400 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b7$$eCorresponding author 000877400 773__ $$0PERI:(DE-600)2042147-3$$a10.7566/JPSJ.89.064005$$gVol. 89, no. 6, p. 064005 -$$n6$$p064005 -$$tJournal of the Physical Society of Japan$$v89$$x1347-4073$$y2020 000877400 8564_ $$uhttps://juser.fz-juelich.de/record/877400/files/Invoice_20204033.pdf 000877400 8564_ $$uhttps://juser.fz-juelich.de/record/877400/files/jpsj.89.064005.pdf 000877400 8564_ $$uhttps://juser.fz-juelich.de/record/877400/files/Invoice_20204033.pdf?subformat=pdfa$$xpdfa 000877400 8564_ $$uhttps://juser.fz-juelich.de/record/877400/files/article.pdf$$yPublished on 2020-05-22. Available in OpenAccess from 2021-05-22. 000877400 8564_ $$uhttps://juser.fz-juelich.de/record/877400/files/article.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-22. Available in OpenAccess from 2021-05-22. 000877400 8564_ $$uhttps://juser.fz-juelich.de/record/877400/files/jpsj.89.064005.pdf?subformat=pdfa$$xpdfa 000877400 8767_ $$820204033$$92020-05-27$$d2020-06-08$$ePublication charges$$jZahlung erfolgt$$p69486$$zYPY 30000,- 000877400 909CO $$ooai:juser.fz-juelich.de:877400$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000877400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b0$$kFZJ 000877400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b1$$kFZJ 000877400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b2$$kFZJ 000877400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b3$$kFZJ 000877400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b7$$kFZJ 000877400 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000877400 9141_ $$y2020 000877400 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000877400 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS SOC JPN : 2018$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16 000877400 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16 000877400 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000877400 980__ $$ajournal 000877400 980__ $$aVDB 000877400 980__ $$aUNRESTRICTED 000877400 980__ $$aI:(DE-Juel1)JSC-20090406 000877400 980__ $$aAPC 000877400 9801_ $$aAPC 000877400 9801_ $$aFullTexts