000877401 001__ 877401
000877401 005__ 20220930130241.0
000877401 0247_ $$2doi$$a10.1029/2019WR025237
000877401 0247_ $$2ISSN$$a0043-1397
000877401 0247_ $$2ISSN$$a0148-0227
000877401 0247_ $$2ISSN$$a1944-7973
000877401 0247_ $$2ISSN$$a2156-2202
000877401 0247_ $$2Handle$$a2128/24973
000877401 0247_ $$2altmetric$$aaltmetric:79030222
000877401 0247_ $$2WOS$$aWOS:000535672800052
000877401 037__ $$aFZJ-2020-02171
000877401 082__ $$a550
000877401 1001_ $$00000-0001-8890-3359$$aTajiki, M.$$b0$$eCorresponding author
000877401 245__ $$aRecursive Bayesian Estimation of Conceptual Rainfall‐Runoff Model Errors in Real‐Time Prediction of Streamflow
000877401 260__ $$a[New York]$$bWiley$$c2020
000877401 3367_ $$2DRIVER$$aarticle
000877401 3367_ $$2DataCite$$aOutput Types/Journal article
000877401 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1591194928_4985
000877401 3367_ $$2BibTeX$$aARTICLE
000877401 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877401 3367_ $$00$$2EndNote$$aJournal Article
000877401 520__ $$aConceptual rainfall‐runoff models account for the spatial dynamics of hydrological processes in a basin using simple spatially lumped storage‐flow relations. Such rough approximations introduce model errors that are often difficult to characterize. Here, we develop and apply a methodology that recursively estimates and accounts for model errors in real‐time streamflow prediction settings by adding time‐dependent random noise to the internal states (storages) of the hydrological model. Magnitude of the added noise depends on a precision (inverse variance) parameter that is estimated from rainfall‐runoff data. A recursive Bayesian technique is used for estimation: posteriors of hydrological parameters and states are updated through time with an ensemble Kalman filter, whereas the posterior of the precision parameter is updated recursively using a novel gamma density approximation technique. Applying this algorithm to different model error scenarios allows identification of the main source of model errors. The methodology is applied to short‐term streamflow prediction with the Hymod rainfall‐runoff model in a semi‐cold, semi‐humid basin in Iran. Results show that (i) streamflow prediction in this snow‐dominated basin is more affected by model errors in the slow flow than the quick flow component of the model, (ii) accounting for model errors in the slow flow component improves both low and high flow predictions, and (iii) predictive performance further improves by accounting for Hymod parameter uncertainty in addition to model errors. Overall, accounting for model errors increased Nash‐Sutcliffe efficiency (by 1–5%), reduced mean absolute error (by 2–43%), and improved probabilistic predictive performance (by 50–80%).
000877401 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000877401 588__ $$aDataset connected to CrossRef
000877401 7001_ $$0P:(DE-HGF)0$$aSchoups, G.$$b1
000877401 7001_ $$0P:(DE-Juel1)138662$$aHendricks Franssen, H. J.$$b2
000877401 7001_ $$0P:(DE-HGF)0$$aNajafinejad, A.$$b3
000877401 7001_ $$00000-0001-5012-2653$$aBahremand, A.$$b4
000877401 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2019WR025237$$gVol. 56, no. 2$$n2$$pe2019WR025237$$tWater resources research$$v56$$x1944-7973$$y2020
000877401 8564_ $$uhttps://juser.fz-juelich.de/record/877401/files/Invoice_852424.pdf
000877401 8564_ $$uhttps://juser.fz-juelich.de/record/877401/files/2019WR025237.pdf$$yPublished on 2020-01-29. Available in OpenAccess from 2020-07-29.
000877401 8564_ $$uhttps://juser.fz-juelich.de/record/877401/files/Invoice_852424.pdf?subformat=pdfa$$xpdfa
000877401 8564_ $$uhttps://juser.fz-juelich.de/record/877401/files/2019WR025237.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-01-29. Available in OpenAccess from 2020-07-29.
000877401 8767_ $$8852424$$92020-06-02$$d2020-06-18$$ePage charges$$jZahlung erfolgt$$zUSD 687.50
000877401 909CO $$ooai:juser.fz-juelich.de:877401$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000877401 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138662$$aForschungszentrum Jülich$$b2$$kFZJ
000877401 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000877401 9141_ $$y2020
000877401 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000877401 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877401 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWATER RESOUR RES : 2018$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877401 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877401 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000877401 980__ $$ajournal
000877401 980__ $$aVDB
000877401 980__ $$aUNRESTRICTED
000877401 980__ $$aI:(DE-Juel1)IBG-3-20101118
000877401 980__ $$aAPC
000877401 9801_ $$aAPC
000877401 9801_ $$aFullTexts