001     877401
005     20220930130241.0
024 7 _ |a 10.1029/2019WR025237
|2 doi
024 7 _ |a 0043-1397
|2 ISSN
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 1944-7973
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2128/24973
|2 Handle
024 7 _ |a altmetric:79030222
|2 altmetric
024 7 _ |a WOS:000535672800052
|2 WOS
037 _ _ |a FZJ-2020-02171
082 _ _ |a 550
100 1 _ |a Tajiki, M.
|0 0000-0001-8890-3359
|b 0
|e Corresponding author
245 _ _ |a Recursive Bayesian Estimation of Conceptual Rainfall‐Runoff Model Errors in Real‐Time Prediction of Streamflow
260 _ _ |a [New York]
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1591194928_4985
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Conceptual rainfall‐runoff models account for the spatial dynamics of hydrological processes in a basin using simple spatially lumped storage‐flow relations. Such rough approximations introduce model errors that are often difficult to characterize. Here, we develop and apply a methodology that recursively estimates and accounts for model errors in real‐time streamflow prediction settings by adding time‐dependent random noise to the internal states (storages) of the hydrological model. Magnitude of the added noise depends on a precision (inverse variance) parameter that is estimated from rainfall‐runoff data. A recursive Bayesian technique is used for estimation: posteriors of hydrological parameters and states are updated through time with an ensemble Kalman filter, whereas the posterior of the precision parameter is updated recursively using a novel gamma density approximation technique. Applying this algorithm to different model error scenarios allows identification of the main source of model errors. The methodology is applied to short‐term streamflow prediction with the Hymod rainfall‐runoff model in a semi‐cold, semi‐humid basin in Iran. Results show that (i) streamflow prediction in this snow‐dominated basin is more affected by model errors in the slow flow than the quick flow component of the model, (ii) accounting for model errors in the slow flow component improves both low and high flow predictions, and (iii) predictive performance further improves by accounting for Hymod parameter uncertainty in addition to model errors. Overall, accounting for model errors increased Nash‐Sutcliffe efficiency (by 1–5%), reduced mean absolute error (by 2–43%), and improved probabilistic predictive performance (by 50–80%).
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schoups, G.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hendricks Franssen, H. J.
|0 P:(DE-Juel1)138662
|b 2
700 1 _ |a Najafinejad, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bahremand, A.
|0 0000-0001-5012-2653
|b 4
773 _ _ |a 10.1029/2019WR025237
|g Vol. 56, no. 2
|0 PERI:(DE-600)2029553-4
|n 2
|p e2019WR025237
|t Water resources research
|v 56
|y 2020
|x 1944-7973
856 4 _ |u https://juser.fz-juelich.de/record/877401/files/Invoice_852424.pdf
856 4 _ |y Published on 2020-01-29. Available in OpenAccess from 2020-07-29.
|u https://juser.fz-juelich.de/record/877401/files/2019WR025237.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/877401/files/Invoice_852424.pdf?subformat=pdfa
856 4 _ |y Published on 2020-01-29. Available in OpenAccess from 2020-07-29.
|x pdfa
|u https://juser.fz-juelich.de/record/877401/files/2019WR025237.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:877401
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138662
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-26
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b WATER RESOUR RES : 2018
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21