


While data assimilation provides a proper technique for streamflow predictions, its success crucially depends

on an accurate characterization of the various sources of uncertainty in model and data (Pathiraja et al.,

2018; Weerts & El Serafy, 2006). This essentially entails two challenges: (i) how to mathematically model

and parameterize the different sources of uncertainty and (ii) how to estimate the resulting error parameters

(e.g. variance of random noise) from available data and prior information.

With respect to the first challenge, sources of uncertainty include errors in data (e.g., river discharge), in

model inputs (parameters, initial conditions, and boundary conditions) and in the model itself, as discussed

by Vrugt (2016). If not all sources of uncertainty are considered, the predictive uncertainty will be underes-

timated (Pathiraja et al., 2018; Salamon & Feyen, 2009). Various probabilistic models have been proposed for

representing these errors, ranging from pragmatic approaches that lump all errors together into a residual

error term (Bates & Campbell, 2001; Schoups & Vrugt, 2010) to attempts at modeling each error source sepa-

rately (Kavetski et al., 2006; Kuczera et al., 2006; Li et al., 2014). While the second approach is conceptually

appealing, it requires the use of prior knowledge to avoid issues of nonuniqueness in estimated error para-

meters (Renard et al., 2010). Data assimilation applications typically use the second approach, with model

errors accounted for by adding random noise to the model states (e.g., Moradkhani et al., 2005), and error

parameters such as noise variances fixed a priori, thereby avoiding the non‐uniqueness issue. Alternative

approaches for quantifying model error in conceptual rainfall‐runoff models include using constant

(Huard & Mailhot, 2008; Kavetski et al., 2006) and time‐varying random model parameters (Anderson,

2007; Kuczera et al., 2006; Li et al., 2014; Stroud & Bengtsson, 2007), as well as spatiotemporal varying model

error (Anderson, 2009; Bauser et al., 2018), time‐varying random bias (Drécourt et al., 2006; Pauwels et al.,

2013) or implicitly accounting for model errors using an inflated observation‐error covariance (Gejadze

et al., 2017). Irrespective of the error model used, it is useful to take a Bayesian approach and account for

uncertainty in the model error parameters, since model errors are typically difficult to quantify a priori, that

is, without comparing model simulations to actual data.

With respect to the second challenge, once a suitable error model and parameterization is formulated, its

parameters (e.g., variance of random noise) need to be estimated from available data. In data assimilation

this is sometimes referred to as adaptive Kalman filtering and filter/inflation tuning. For a real‐world system

with restricted knowledge about sources of uncertainty, tuning a filter is complicated (Anderson &

Anderson, 1999) but an essential part in assimilating data (Reichle et al., 2008). Estimating model error para-

meters could be based on maximum likelihood estimation (Mitchell & Houtekamer, 2000), maximizing the

posterior (Kuczera et al., 2006; Li et al., 2014; Renard et al., 2011), approximating the entire posterior (Bauser

et al., 2018; Stroud & Bengtsson, 2007), or estimation of an inflation factor (Anderson & Anderson, 1999;

Rasmussen et al., 2016). It can be done offline by batch estimation of the model error parameters (Tandeo

et al., 2015) or online by sequentially updating the posterior of the model error parameters (Bauser et al.,

2018; Crow & Van den Berg, 2010; Reichle et al., 2008). Additionally, it can be done manually using trial

and error via multiple EnKF runs (Anderson & Anderson, 1999; Xie et al., 2014), or it can be automatically

executed (Clark et al., 2008; Moradkhani et al., 2005). In contrast to automatic tuning, the manual approach

is time consuming and not as transparent and reproducible.

Although a Gaussian distribution can be used to approximate the posterior of model error parameters

(Miyoshi, 2011), it is acknowledged in previous researches (Anderson, 2009; Pathiraja et al., 2018) that

a Gaussian distribution might not be the best choice for representing uncertainty in model error para-

meters that are nonnegative (e.g., noise variance) Alternative distributions which have been proposed

in the atmospheric literature for nonnegative model error parameters are the gamma distribution

(Stroud et al., 2018; Stroud & Bengtsson, 2007) and the Wishart distribution (Raanes et al., 2018;

Ueno & Nakamura, 2016).

The goal of this paper is to develop and apply a methodology that accounts for model errors of a conceptual

rainfall‐runoff model in a real‐time streamflow prediction setting. By accounting for model errors we aim to

improve short‐term predictive performance under both low‐flow and high‐flow conditions. In line with the

two challenges outlined above, our methodology consists of two parts:

1. Identifying the main source of model error: That is, which model component is the main source of

streamflow prediction error? To answer this question, we evaluate different hypotheses about where in

the hydrological model the errors originate by adding noise to different model components and
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comparing the resulting predictive performance. The underlying idea is that a correct accounting of

model errors should translate in better probabilistic predictions.

2. Quantifying model error: Each hypothesis in (i) requires online estimation of the magnitude (variance or

precision) of model errors, along with model states (and parameters); this is done with a Bayesian algo-

rithm that recursively updates (an approximation of) the posterior of the precision and alternates with

state updates by the EnKF. This can be seen as an automatic tuning of the EnKF, which otherwise would

require manual tuning (multiple EnKF runs) to find a satisfactory level of model noise for each model

error scenario in (i).

Application on a case study in Iran showcases both aspects of our approach: first, it illustrates how recursive

model noise estimation automatically tunes the EnKF ensemble spread; second, it reveals whichmodel com-

ponent contains the main source of error for the specific basin and model used here.

The remainder of the paper is structured as follows. The study area and hydrologic model are introduced in

the section 2, including the addition of random noise to the model. The applied and proposed approach for

recursive Bayesian estimation is presented in section 3, with experimental setup and evaluation criteria pre-

sented in section 4. Section 5 contains results, followed by discussion and conclusions.

2. Study Area and Model Description

The proposed method was applied to the Roudak catchment with an area of 437 km2 located in the north of

Tehran province, Iran (Figure 1). The catchment is located within a semi‐cold and semi‐humid climate and

has 80 frost days per year. It is typically snow covered between November and March, and the hydrologic

regime of the catchment is affected by snow melt and accumulation. Yearly mean air temperature is 9 °C

and varies throughout the year from −2 °C (January) to 22 °C (July). Average annual precipitation (rainfall

and snow) estimated by the Thiessen method is 757 mm; the driest month is July (19 mm) and the wettest

month is November (115 mm).

Precipitation and temperature show a strong spatial variability related to the large elevation difference in the

catchment of 2578m, with average slopes of 50%. Land use is predominantly rangeland (70%) and shrub land

(20%), with the remaining 10% consisting of urban areas, planted forest and agriculture. The main river of

the Roudak catchment is a 30 km perennial river with average observed discharge ranging from 2.9

(August) to 20.1 (April) m3/s, and overall average discharge of 7.2 m3/s during 2008–2016.

Data used in this study includes daily discharge from one hydrometric station (Roudak station), daily preci-

pitation from six rain gauges in the catchment (Shemshak, Garmabdar, Ahar, Fasham, Amameh, and

Galookan), and daily temperature from one meteorological station (Latian) located 13 km southeast of the

catchment (Figure 1). All data are collected for the period 2008–2016 by the regional water organization

of Tehran.

The rest of this section describes our approach for modeling rainfall‐runoff processes in the Roudak catch-

ment, which consists of deterministic and stochastic components.

2.1. Deterministic Component: Hymod Model

Hymod is applied at the daily time scale to simulate rainfall‐runoff in the catchment. Due to the role of snow

and the large elevation differences in the Roudak catchment, two snow reservoirs have been added to the

original Hymod model to appropriately account for snowmelt. A schematic of the modified Hymod model

is shown in Figure 2 (Black components). Model inputs consist of

1. Forcing (boundary conditions): daily precipitation (P) and temperature (T).

2. Initial storage levels: storages consist of two snow storage reservoirs (SW1, SW2), storage in the nonlinear

reservoir representing the watershed soil water storage (SMc), three quick‐flow reservoirs (Sq1,Sq2,

and Sq3), and a slow‐flow reservoir (Ss). All seven storages or states are contained in vector S.

3. Parameters: maximum storage capacity (Cmax), degree of spatial variability of the soil moisture capacity

(β), flow distributing factor (α), and inverse residence times of the quick reservoirs (Rq), and the slow

reservoir (Rs). All five parameters are contained in vector θ.

Referring to Figure 2, model calculations proceed as follows. First, precipitation is split into rainfall and

snow using the degree day method considering a threshold temperature (Tt) and degree day factor to
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calculate snow accumulation and melting (Gao et al., 2014) for two different elevation zones within the

catchment, that is, above and below 2,200 m elevation. Potential evapotranspiration is estimated using the

Hargreaves model (Gavilán et al., 2006) for the two elevation zones. Estimated rainfall, snowmelt, and

PET are then used as input for the soil water balance, which uses a nonlinear reservoir to compute actual

ET and total (surface and subsurface) runoff (referred to as excess rainfall or ER). Runoff depends on soil

water storage C, which is assumed to vary across the basin according to equation (1) developed by Moore

(1985) to estimate the saturated fraction of the catchment:

Figure 1. Location of the study area in Iran (left) and location of rain gauges, meteorological station, and hydrometric sta-

tion in the Roudak catchment (right).

Figure 2. Schematic diagram of the deterministic (black color) and stochastic (red color) components of the modified

Hymod model. Rectangles indicate reservoirs (storages or states) for which a water balance is computed. As an exam-

ple, model error is added to the slow‐reservoir state Ss. The different terms that make up the posterior of τ are shown in

green (see section 3 and equation (10)).

10.1029/2019WR025237Water Resources Research

TAJIKI ET AL. 4 of 25



Fc ¼ 1− 1−
C

Cmax

� �β

(1)

Runoff is split between quick and slow runoff components using parameter α, routed to the basin outlet

using parameters Rq and Rs, and finally summed to get simulated river discharge.

For a single time step t, the Hymod model can be represented by a deterministic function that converts

inputs into outputs:

Qm;t; Sm;t

� �
¼ fHymod St−1;Pt;Tt;PETt; θð Þ (2)

where St − 1 is the vector of seven states at time t − 1, Pt,Tt, and PETt are precipitation, temperature and

potential evapotranspiration at time t respectively, and θ is the vector of five parameters.

The model in equation (2) is driven by “true,” i.e., error‐corrected, inputs, while model outputs in

equation (2) (storages and discharge at time t) include subscript m (“m” for model) to differentiate them

from their observed and true counterparts. Model and observed outputs are not equal because of various

error sources, including errors in the specified model inputs (forcing or boundary conditions,

parameters, initial states), measurement (e.g., due to imperfect measurement devices, and temporal or

spatial incompatibility between the measurement and the corresponding model variable), and

model conceptualization and parameterization (model error). These sources of uncertainty are

accounted for by including various stochastic components, as described next and shown in Figure 2

(red components).

2.2. Stochastic Component 1: Input Errors (Forcing, Parameters, and Initial States)

Daily values for air temperature and log‐transformed precipitation are assumed to have Gaussian random

errors:

T teN To;t; νT
� �

(3)

logPteN logPo;t; νP
� �

(4)

where To,t is daily observed temperature and Po,t is daily observed precipitation, while Tt and Pt are the cor-

responding “true,” i.e., error‐corrected, values. These equations treat the “true” values as random samples

from a Gaussian distribution centered on the observed values. The standard deviation of observed tempera-

ture is assumed to be 2°K, resulting in a value of the variance νT equal to 4°K. A relative error of 50% is

assumed for observed precipitation, so that νP is equal to 0.25. The assumption that precipitation error is log-

normally distributed (Li et al., 2015; Lü et al., 2016) and temperature is normally distributed (Lü et al., 2016)

is commonly made. Uncertainty in initial model states is specified as a normal distribution with means equal

to the states St* at the end of a 1 year spin‐up (period 2012–2013) with variances νS set according to a 10%

relative error on each state:

St*eN St* ; νS
� �

(5)

where t* is the last time step of the spin‐up period.

Finally, prior uncertainty of the Hymod parameters (Cmax,β,α,Rq,Rs) is defined as a uniform distribution for

each parameter with prior lower (lb) and upper (ub) bounds shown in Table 1.

2.3. Stochastic Component 2: Observation Errors

Error in observed discharge is described by a normal distribution with standard deviation increasing as a

function of discharge to account for the greater uncertainty in the rating curve at higher flows (Clark

et al., 2008):

DteN Qt; νQð Þ (6)

where Dt is observed discharge, Qt is true discharge, and νQ = (0.1Dt)
2, that is, a 10% observation error is

assumed.
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2.4. Stochastic Component 3: Model Errors

Given true values for all model inputs, computed model outputs in equation (2) may still differ from the true

outputs due to various model assumptions and simplifications. We assume that these errors can be

accounted for by adding time‐dependent random noise to the hydrological model states and/or flows in

Hymod. Ideally, we would want to add noise to that part of the model that contains or is expected to contain

the largest errors. As this is in principle not known a priori, the strategy here is to test and compare various

scenarios, where each scenario makes different assumptions about the source of the model errors by adding

noise to a different part of the model. Specifically, referring to the Hymod diagram in Figure 2, we wish to

determine whether significant errors originate from (i) the slow flow component of the model, (ii) the quick

flow component, or (iii) both. As such, errors are considered separately on each of the following flows and

states:Q, ER, Ss, Sq1, Sq2, and Sq3. Adding noise on dischargeQ in principle captures errors in all “upstream”

components of the model but may not be the most effective as it does not consider the source of error within

the model. For example, if the source of the discharge errors originates from conceptual or parameterization

errors in the nonlinear reservoir of the model, then it may be better to add noise to ER (see Figure 2). This

noise then propagates through both slow and quick flow components of the model, eventually affecting

discharge predictions.

Formally, let xt represent one of the variables (Q, ER, Ss, Sq1, Sq2, or Sq3) at time t. Then adding Gaussian

model errors can be achieved via

xteN μt; τ
−1

� �
(7)

where xt represents the Hymod variable of interest, μt represents the modeled value of the selected variable

(before adding noise), and τ is the precision (inverse variance) of the added noise. With the exception of

adding noise to Q, this approach adds noise “inside” the model, and thus turns Hymod into a probabilistic

model:

Qt; St½ �epHymod Qt; StjSt−1;Pt;Tt;PETt; τ; θð Þ (8)

where τ is now an additional input, and outputs on the left‐hand side represent modeled values including

random model errors, as opposed to modeled values in equation (2). The use of symbol ~ in equation (8)

makes clear that outputs are now sampled values from a probabilistic model as opposed to outputs from a

deterministic model (“=” in equation (2)). In this setting, noise added to an internal state or flow propagates

to all “downstream” variables in the model (see Figure 2).

An important decision relates to the value of τ. Whereas standard errors of measurements can often be esti-

mated a priori, magnitudes of model error are difficult to pinpoint in advance, especially when it relates to

errors of an unobserved state in the model. Therefore, we treat τ as a (time‐invariant) random variable and

account for its prior uncertainty using as prior distribution a gamma distribution with two parameters

(α0,β0):

τeGa α0; β0ð Þ (9)

where α0 and β0 are shape and rate parameters of the gamma distribution. Their values are chosen to reflect

initial uncertainty about τ and were selected according to magnitude of the state or flow to which model

Table 1

Prior Ranges of the Hymod Parameters and Calibrated Values With SCE‐UA Using Data for the Period 2008–2012

Parameter Definition

Prior uncertainty
Calibrated

parameterLower band Upper band

Cmax maximum soil water storage capacity (mm) 0 1000 290

Β Degree of spatial variability of the soil water storage capacity 0 5 4.5

Α Flow distributing factor 0.01 1.0 0.2

Rq Inverse residence time of each quick reservoir (day
−1

) 0.5 0.8 0.75

Rs Inverse residence time of the slow reservoir (day
−1

) 0.01 0.1 0.03
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error was added (Table S1 in the supporting information). An example for the prior distribution of τ is shown

in Figure S1. This prior distribution strikes a balance between accommodating the possibility of large model

errors (for values of τ close to zero) as well as small model errors (for large values of τ in the long tail of the

distribution). Reasons for choosing a gamma distribution are (i) it has positive support and is thus

appropriate for modeling a nonnegative variable such as τ and (ii) it is computationally attractive as it

leads to an efficient recursive estimation scheme, as shown in the next section.

3. Recursive Bayesian Estimation

Our goal is now to recursively estimate posteriors for the model error precision as well as for the Hymod

states and parameters. Every time a new discharge observation becomes available it is assimilated by (1)

updating the posterior of τ (precision of model errors), and (2) updating the states and parameters of

Hymod. We first present a stepwise overview of the algorithm and then give mathematical details for updat-

ing the posteriors. The posterior update procedure can be summarized as follows:

Randomly draw N initial states and Hymod parameter sets from their prior distributions (equation (5) and

Table 1).

For each day

1. Predict

Randomly draw N precipitation and temperature values from their prior distributions (equations (3)

and (4)).

Randomly draw N model error values by repeating N times the following two steps: (i) sample a value for

model error precision (τ) (inverse variance) from its current posterior distribution and (ii) sample an error

value fromN 0; τ−1ð Þ.

Run the probabilistic version of Hymod (Figure 2 and equation (8)): This propagates input ensembles

through the model in Figure 2, thereby creating ensembles for all intermediate variables in this figure,

including ensembles of predicted states and discharge.

2. Update posterior of model error precision

See section 3.1 for details: The posterior of τ is represented by a gamma density whose shape (α) and rate (β)

parameters are updated with the current discharge observation using equations (14)–(16).

3. Update posterior of states and parameters

See section 3.1. for details: Posteriors for states and parameters are represented by ensembles that are

updated with the current discharge observation using the EnKF (equation (17)).

End

Note that the posterior of model error precision τ is updated separately from the posterior of states and para-

meters. The alternative of adding the precision as an additional unknown to the state vector, that is, the

state‐augmentation approach, was not considered here, since previous studies have shown that this does

not work well for variance parameters (DelSole & Yang, 2010; Stroud & Bengtsson, 2007). Stroud et al.

(2018) point out that state‐augmentation generally does not work well for parameters with small correlation

with the states. The following two sections provide mathematical details for updating the posteriors.

3.1. Sequential Updating of the Posterior of τ

Our method sequentially updates the posterior of precision or inverse variance τ of the model errors. This is

achieved by maintaining a gamma density approximation of the posterior: as new data become available the

approximation is updated in real‐time to reflect new information on model errors. Our method was inspired

by Stroud et al. (2018) and is also closely related to Stroud and Bengtsson (2007). Stroud and Bengtsson

(2007) present an exact closed‐form (analytical) updating scheme for the posterior of the precision of model

errors (represented by a gamma density), but their scheme assumes that the variance of model and observa-

tion errors are related by a common scaling factor. When this assumption is relaxed, posterior approxima-

tions are required. For example, Anderson (2007) and Stroud et al. (2018) used Gaussian approximations.

Since our interest is in the estimation of the precision (or variance) of model errors—a positive quantity—
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we propose to use gamma approximations for its posterior, as in Stroud and Bengtsson (2007). The gamma

density is a common choice for modeling precision variables in Bayesian analysis, partly because of its

computational properties; for example a gamma prior is conjugate to a linear‐Gaussian likelihood, leading

to closed‐form expressions for the posterior, as used in Stroud and Bengtsson (2007). In this paper, we deal

with nonlinear models, so we lose conjugacy and the posterior is not available analytically, although it can

be efficiently approximated, as detailed below. This results in an approximate but efficient recursive method

for estimating the posterior of τ that is fully Bayesian and extends point (posterior mode) estimation of the

model noise, as in, for example, Li et al. (2014).

Mathematically, the posterior of τ at time t is written recursively in terms of the posterior at time t− 1 (which

becomes the prior for time t) and the likelihood at time t. For model noise on a selected flow or state variable

x (see previous section), the formula is

p τjDtð Þ∝p τjDt−1ð Þ∫xt∫μtp μtjDt−1ð ÞN xtjμt; τ
−1

� �
p Dtjxtð Þdμtdxt (10)

whereDt is the current dischargemeasurement andDt= (Dt − 1,Dt) holds all discharge data up to and includ-

ing time t. The prior of τ at time t is written as p(τ|Dt − 1); for the first time step, this distribution is equal to

Ga(τ|α0, β0) (equation (9)). The double integral represents the likelihood of τ at time t: p(μt|Dt − 1) is the

predictive distribution of the selected flow or state variable before adding noise,N xtjμt; τ
−1ð Þ is the model

noise term (equation (7)), and p(Dt| xt) is likelihood at time t of the true flow or state (after adding noise).

Equation (10) can be understood by reference to the model error depicted in Figure 2, which shows the case

of model error added to the slow‐reservoir state Ss. For this case μt corresponds to the modeled state Ss,m

(“m” indicates modeled) before adding model error, and xt corresponds to the true state Ss after adding

model error. In order to update the posterior for τ at time t we want to combine three sources of information

(arrows in Figure 2): (i) the prior for τ (i.e., the posterior for τ at time t − 1), (ii) the predictive distribution of

Ss,m (p(μt|Dt − 1)), and (iii) probabilistic information on Ss provided by the current discharge observation (p

(Dt| xt)). As Figure 2 shows, the latter two are combined with N xtjμt; τ
−1ð Þ to provide a probabilistic

information stream to τ; this constitutes the likelihood term for τ and it corresponds to the double integral

in equation (10).

To make the double integral in equation (10) tractable, both the predictive distribution p(μt|Dt − 1) and

likelihood p(Dt| xt) are approximated by Gaussian distributions. Specifically, following Stroud et al. (2018),

predictive distribution p(μt|Dt − 1) is approximated byN μtjμμ; vμ

� 	
, where μμ and vμ are mean and variance,

respectively, of an ensemble of predicted values of μt, which is the selected flow or state variable before add-

ingmodel noise. Likewise, likelihood p(Dt| xt) is approximated byN xtjμx ; vxð Þ, where μx and vx are estimated

by linearizing via linear regression the relation between predicted Qt and xt: Qt = μQ,pred+ψ(xt − μx,pred) or

xt ¼
Qt−μQ;pred

ψ
þ μx;pred. This last equation is then used to translate mean Dt and variance vQ for the likelihood

of Qt into mean and variance of xt:

μx ¼
Dt−μQ;pred

ψ
þ μx;pred (11)

vx ¼
vQ

ψ2 (12)

where μQ,pred and μx,pred are (ensemble) means of predicted Qt and xt, respectively, and ψ is the linear regres-

sion coefficient between the two ensembles.

With these Gaussian approximations, we can rewrite equation (10) in the following form:

p τjDtð Þ∝p τjDt−1ð Þ∫xt∫μtN μtjμμjvμ

� 	
N xtjμt; τ

�1
� �

N xtjμx ; vxð Þdμtdxt (13)

As all terms under the integral are now Gaussian, the double integral can be easily computed (see Appendix

A). While this yields a closed‐form formula for the posterior, the resulting density does not correspond to a

known parametric density. To get an online recursive estimation algorithm, that is, one that allows easy
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posterior sampling and avoids the need to reprocess data and likelihoods

from previous time steps, we propose to approximate the posterior by a

new gamma density (updated from the gamma prior). Without such an

approximation, the posterior would grow in complexity every time step,

because each time step an additional likelihood term is added that turns

the posterior into a nonstandard density. Hence, even though the poster-

ior is one‐dimensional, the mathematical expression for the posterior

grows in complexity. The gamma approximation prevents this and main-

tains a compact representation of the posterior and thus allows for recur-

sive updating without the need to go back to earlier data, while also being

easy to sample from.

Hence, at each time step, the posterior of τ is represented by a gamma dis-

tribution: p(τ|Dt − 1) ≈ Ga(τ| αt − 1, βt − 1) and p(τ|Dt) ≈ Ga(τ|αt, βt). This

allows us to derive closed‐form recursive update equations for αt and βt

(see Appendix A):

βt ¼ αt−1−τ
2 d

2logf τð Þ

d τ2
(14)

βt ¼ βt−1−
d logf τð Þ

d τ
− αt−αt−1ð Þτ−1 (15)

τ ¼
αt−0:5

βt
(16)

where expressions for log f and its derivatives are given in the appendix. Since αt and βt in equations (14) and

(15) depend on τ, we update τ in equation (16) and recompute αt and βt again with equations (14) and (15).

The update in equation (16) sets τ to a value that lies in between the mean (αt
βt
) and the mode (αt−1

βt
) of the

new gamma density approximation. At each time t, these three equations are iterated 10 times (with

initial τ ¼ αt−1−0:5
βt−1

) to yield a gamma approximation of the posterior of τ for that time step. We iterate

10 times but typically observe convergence after two to five iterations. The iteration could be made more

sophisticated by monitoring convergence of the iterations and using a stopping criterion, but the compu-

tational cost of 10 iterations is small. As new data come in, these update equations result in an automatic

tuning of the amount of model noise (τ) so that the resulting probabilistic prediction is neither too wide

nor too narrow.

An alternative approach to the gamma approximation would be to maintain a particle approximation of the

posterior and update it using sequential importance sampling, as in a particle filter. This approach is not

tested here, as the parametric gamma approximation worked quite well in this case, as illustrated in

Figure 3. This figure compares the actual posterior for τ at a specific time step, as given by equation (A7),

together with the gamma approximation obtained by iteratively applying equations (14)–(16): The iteration

starts from the prior for that time step (blue in Figure 3) and iteratively moves the posterior approximation

closer to the actual posterior (red). Typically, only a few iterations are required to get a good posterior

approximation (Figure 3). Note that the approximation is a good but not perfect fit, since the actual posterior

is not exactly gamma.

3.2. Sequential Updating of the Hymod State and Parameter Posteriors

The states and parameter posteriors are represented by ensembles, which are generated in the prediction

step outlined above. The EnKF is used to update each ensemble member i with the current

discharge observation:

St; θjDtð Þi ¼ St; θjDt−1ð Þi þKt
eDt−Qt

� 	
i

i ¼ 1; 2;…;N (17)

where eDt represents randomly perturbed observed discharge (with perturbation variance vQ). On the right‐

hand side of equation (17), predicted values for states St and discharge Qt are generated by the sampling

Figure 3. Approximating the actual posterior of τ (in black) by a gamma

density by iterating equations (14)–(16), starting from the prior.
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process described in the predict step at the start of section 3. Finally,Kt in

equation (17) is the Kalman gain vector and is written as

Kt ¼ V St ;θð Þ;Qt
vQ;pred þ vQ
� �

−1
(18)

where V St ;θð Þ;Qt
is a vector of ensemble cross‐covariances between states‐

parameters (St, θ) and predicted discharge Qt and vQ,pred is the ensemble

variance of predicted discharge Qt.

The EnKF update in equation (17) may result in values for states and para-

meters outside their physical range. For this reason, the following con-

straints are applied to states and parameters after the EnKF update:

St½ �>0 (19)

lb< θ½ �<ub (20)

SMc<Cmax= βþ 1ð Þ (21)

Similar constraints were also used in previous work (Wang et al., 2009).

4. Experimental Setup and Evaluation Metrics

The recursive estimationmethodology in the previous section is applied to

short‐term (1‐, 2‐, or 3‐day ahead) streamflow prediction in the Roudak

catchment during the period September 2012 to August 2016. Since it is not known a priori which model

components contain significant model errors, a series of data assimilation experiments is set up, where each

experiment considers different sources of uncertainty, as summarized in Table 2. Each experiment considers

uncertainty in initial conditions (initial model storages) and model forcings (precipitation and temperature).

Experiments 1–9 use fixed values for the Hymod parameters for the period of 2012–2016, obtained via batch

calibration with the Shuffled Complex Evolution (SCE‐UA) global optimization algorithm (Duan et al.,

1992) for the period 2008–2012. The calibrated parameters obtained with SCE‐UA are presented in

Table 1. Since parameters are fixed in these experiments, only states are updated in equation (17).

Experiments 1–8 differ in terms of how model errors are accounted for, including an experiment without

model error (Experiment 1). The last column in Table 2 lists the state or flow variable (Q, Ss, Sq1, Sq2, Sq3,

or ER) for which model error is included with equation (7). In each case, precision τ (inverse variance) of

the model error is estimated recursively using the method described in section 3.1. In Table 2, each experi-

ment is named according to the selected state or flow variable that has model error. Note that the estimated

values for τ possibly interact with other errors. For example, even though rainfall errors are accounted for, a

misspecification in the rainfall error model can affect the estimated values of τ. In general, as demonstrated

by Renard et al. (2010), completely separating model input and structural errors is very challenging.

In contrast to experiments 1–8, Experiments 9–16 include parameter uncertainty and both states and para-

meters are updated with the EnKF via the joint state‐parameter approach according equation (17). However,

due to strong interaction between Cmax and β (Moradkhani et al., 2005) in Hymod, Cmax is not estimated but

is set equal to the value estimated by calibration with SCE‐UA. Experiments 9–16 follow the same naming

convention as Experiments 1–8 to distinguish eachmodel error scenario, except that now “Par” is prepended

to the name to indicate that parameter uncertainty is included. For example, experiment Par‐StrSq1 accounts

for parameter uncertainty and considers model error on internal Hymod storage Sq1.

Note that in Experiments 8 and 16, model errors are added on two internal states, namely, Sq1 and Ss. The

model in those experiments thus includes two τ values (τSq1 and τSs), with the posterior of τSq1 updated when

mean predicted flow is more than 4 m3/s (the median flow), and the posterior of τSs updated whenmean pre-

dicted flow is less than 4 m3/s. This model thus assumes that high and low flows have different error levels,

with the median flow chosen as a reasonable cut‐off value. This results in uncorrelated errors added to the

slow and fast flow storages. Contrast this with Experiments 7 and 15, where noise added on ER affects both

slow and fast flow and thus results in perfectly correlated errors for the slow and fast flow storages. As such,

Table 2

Overview of Data Assimilation Experiments

No.

Name of the

experiment

Sources of uncertainty

Parameters Model error

1 StrNoNoise No No

2 StrQ No Q

3 StrSq3 No Sq3
4 StrSq2 No Sq2
5 StrSq1 No Sq1
6 StrSs No Ss
7 StrER No ER

8 StrSq1Ss No Sq1 & Ss
9 Par‐ StrNoNoise Yes* No

10 Par‐StrQ Yes* Q

11 Par‐StrSq3 Yes* Sq3
12 Par‐StrSq2 Yes* Sq2
13 Par‐StrSq1 Yes* Sq1
14 Par‐StrSs Yes* Ss
15 Par‐StrER Yes* ER

16 Par‐StrSq1Ss Yes* Sq1 & Ss

Note. All experiments include uncertainty in initial states and boundary
conditions (precipitation and temperature).
a
Yes*: four parameters out of five parameters including β, α, Rq, and Rs.
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the experiments considered cover the two corner cases (no correlation and perfect correlation). Experiments

where (partially) correlated random errors are added to two or more model components are not considered

here; this extension is discussed in section 3.2.

All experiments assume that the Hymod parameters are static. The experiments that include parameter

uncertainty sequentially update the parameter posterior with each new discharge value. As a result, the

parameter posterior may change through time, because data are processed sequentially instead of in one

single batch. If the assumption of static parameters is correct, then after processing a sufficient number of

data points the parameter posterior should stabilize.

Finally, note that none of the experiments adds noise to the soil moisture (SMc) and snow (SW1, SW2)

storages. We use Experiments 7 and 15 to account for errors in the soil moisture and runoff generation cal-

culations; these experiments add noise to variable ER (Figure 2), which is the main output from the soil

moisture calculations. Although not included in the paper, experiments that added noise to the snow

storages were also done, but these led to poor and inconsistent results. The probable reason for this is the

poor correlation between the snow storage levels and river discharge. This poor correlation leads to large

posterior uncertainty on the snow storages (see Figure 11, to be discussed later) and is due to snow melt

in the model being dependent on air temperature and not on snow storage (at least, as long as there is

enough snow to melt).

All presented experiments used 5,000 ensemble members; this number was determined by trial and error to

achieve robust estimates of the error variance.

To compare predictive performance of the data assimilation experiments, three evaluation criteria are con-

sidered, that is, Nash‐Sutcliffe Efficiency (NSE), mean absolute error (MAE), and relative logarithmic score

(RLS):

NSE ¼ 1−
Σ mobs−mPredictð Þ2

Σ mobs−mobsð Þ2
(22)

MAE ¼
1

n
Σ mobs−mPredictj jð Þ (23)

RLS ¼ logscore–perfect logscore (24a)

logscore ¼ −

1

2
log2π−

1

2
log vobs þ vPredictð Þ−

mobs−mPredictð Þ2

2 vobs þ vpredict
� � (24b)

where n is the number of observations, m and v are mean and variance, respectively, of either the predicted

(“predict”) or the observed (“obs”) discharge.

Equation (24b)b is a modification of the logarithmic score of Good (1952) suitable for evaluating probabilis-

tic predictions against noisy observations. It corresponds to the error‐convolved logarithmic score of Ferro

(2017, equation (5)) and was recently also used by Pathiraja et al. (2018).

Larger values for NSE and RLS, and smaller values for MAE, indicate better performance, with a maxi-

mum of one for NSE, a maximum of zero for RLS, and a minimum of zero for MAE. The logarithmic score

in equation (24b)b calculates log‐density value of a Gaussian observation given a (approximate) Gaussian

predictive density for new observations. The RLS measures how close a probabilistic prediction is to the

“perfect” prediction, that is, the prediction with maximum value for the logarithmic score. The latter cor-

responds to a deterministic prediction that coincides with the observed value and is obtained by setting

mpredict = mobs and vPredict = 0 in equation (24b)b. The logscore in equation (24b) is a special case of

the logarithm of the Bayesian model evidence (or marginal likelihood) p(x)p(D| x)dx, where p(x) is predic-

tive (prior) distribution for discharge x and p(D| x) is likelihood of x given an observed discharge D. Indeed,

if p(x) = N(x|mpredict, vpredict) and p(D| x) = N(mobs| x, vobs), then logarithm of the model evidence reduces

to equation (24b)b. As such, the logscore in equation (24b) inherits properties of the model evidence, spe-

cifically it penalizes overfitted models (Volpi et al., 2017). For example, an overfitted, overly complex
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model will have a large variance vPredict that decreases the value of the logscore. In general, the model

evidence (and logscore) prefers models with small vPredict as long as mpredict is close enough to mobs; the

limiting case is a “perfect” model with a deterministic prediction that coincides with the observed

value. This behavior is further illustrated in Figure 4, which compares seven different probabilistic

predictions (A–G) with a noisy observation. For unbiased predictions (Figure 4a), the RLS increases as

variance of the prediction decreases and the largest (perfect) score is obtained for a deterministic

prediction (A). For biased predictions (Figure 4b), the RLS rewards predictive distributions that overlap

with the observation distribution. Low scores result when the predictive variance is either too small (E)

or too large (G). The lack of overlap is measured by the third term of equation (24b)b. Note that NSE

and MAE do not take predictive and observation variance into account. The overall ranking of

predictions in Figure 4 based on the RLS is A > B > C > D > F > G > E.

For reference, perfect log‐scores (equation (24b)b) for the entire study period are shown in Figure S2 in the

supporting information. The average value for the entire time series (the perfect log‐score) is −0.16, with

smaller values during high flows and larger values during low flows, because of our assumption that the

observation error increases with discharge. In the results section below, RLS values will be reported, which

are expressed relative to the numbers in Figure S2 (based on equation (24a)).

5. Results

The results section is divided into two parts. First, the benefits of includingmodel errors are demonstrated by

comparing results for Experiment 2 (StrQ) with those for experiment 1 (StrNoNoise). Second, the source of

model errors is investigated by comparing results from experiments where model error is added “inside” of

the model, with and without considering parameter uncertainty (Experiments 2–16). Throughout, the focus

is on 1‐, 2‐, and 3‐day ahead streamflow predictions.

5.1. Model Error on Discharge (Q)

We begin by illustrating the presence of model errors, that is, errors not accounted for by assumed uncertain-

ties in initial storage levels, precipitation, temperature, and Hymod parameters. Figure 5a shows that 1‐day

ahead streamflow predictions without including model errors (experiment StrNoNoise) cannot capture

observed data properly. There are significant deviations especially during low flow periods, with narrow pre-

dictive uncertainty bands (ensemble spread too small), for example, in August–November 2014.

The simplest approach of accounting for model errors is to lump them all together as random noise added to

the simulated discharge Q (experiment StrQ) with noise level quantified by precision parameter τ and esti-

mated recursively from the data. The probabilistic streamflow predictions for this experiment are shown in

Figure 5b. Here, we see much better coverage of the observations, with wider predictive uncertainty bands,

especially during low flows. This becomes very obvious when plotting the RLS (equation (24a)) as a function

of time (see green plots in Figure 5): higher values during low flow indicate predictive distributions that do

not overlap with the observation distribution, similar to Case E in Figure 4b. The inclusion of model errors in

experiment StrQ significantly improves (1‐day ahead) predictive performance of the model, with an average

RLS of −1.39 for StrQ versus −2.71 for StrNoNoise. The low RLS for the latter (Figure 5a) mostly resulted

Figure 4. The RLS (equation (24a)) for various unbiased (a) and biased (b) probabilistic predictions and a noisy observa-

tion. Since observations are assumed unbiased, predictions that do not align with the observations are biased.
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from underprediction of low flows, for example, September to November 2013 and August to October 2014,

which is improved by adding model errors (Figure 5b). Interestingly, the corresponding NSE and MAE

values are quite similar for the two cases (0.91 versus 0.91 for NSE, 1.22 versus 1.31 for MAE,

respectively), suggesting that adding model errors to Q increases the ensemble spread but leaves the

ensemble mean largely the same.

Discharge ensemble spread in experiment StrQ is controlled by precision parameter τ. Figure 5 shows evolu-

tion of its estimated posterior, which is updated recursively with each new measurement. The posterior of τ

fluctuates through time in response to themismatch between predicted and observed discharge: The value of

τ increases during periods of small error and decreases during periods of large error. Since precision is the

inverse of variance, this behavior corresponds to automatic ensemble deflation (increase in τ) or inflation

(decrease in τ) to ensure adequate overlap between predictive and observation distributions. Figure 5b illus-

trates this for three time steps (A–C). At Point A, predicted discharge closely follows observed discharge,

leading to an increase in precision, i.e. a reduction in the noise level. At Point B, predicted discharge diverges

from observed discharge, triggering a subsequent decrease in precision to account for the larger errors.

According to the EnKF update equations (equation (17)), the resulting increase in ensemble spread in prin-

ciple leads to a state update that moves predicted discharge closer to the data, which then again triggers an

increase in τ, as illustrated in Point C. As predicted discharge converges to the observed discharge in the

third time section (C) the precision starts increasing again and keeps on increasing slightly until the end

of the prediction period.

Figure 6 provides further details by plotting the posterior of τ at Points A–C shown in Figure 5. At time A (left

column in Figure 6), the predictive distribution without model error (top figure) is already quite good, and

Figure 5. One‐day ahead probabilistic discharge prediction with corresponding RLS values for (a) experiment StrNoNoise

and (b) experiment StrQ.
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the predictive distribution with model error (middle figure) becomes too wide when compared to the

likelihood. This results in a shift of the posterior of τ to the right (bottom figure), that is, toward smaller

model noise. At time B (middle column in Figure 6), the predictive distribution without model error (top

figure) is biased and too narrow. Adding model errors widens the predictive distribution (middle figure),

and the posterior of τ shifts to the left (bottom figure) to further increase model errors and overlap with

the likelihood function. Finally, at time C (right column in Figure 6), there is adequate overlap between

the likelihood and the predictive distribution and thus the posterior of τ barely changes (its posterior does

not shift).

While the results in this section show that it is important to account for model error to account for misspe-

cified uncertainty by the assumed uncertainties in initial storage levels, precipitation, and temperature, the

approach of adding a constant random noise to the predicted discharge (StrQ) can however be improved. A

first option is to use a more sophisticated model for the noise on Q (e.g., Ammann et al., 2018; Schoups &

Vrugt, 2010). However, this does not provide insight into the source of the model errors. A second option,

which is followed in this paper, is to improve error quantification by tracing down source of the errors, as

discussed next.

5.2. Model Error on States

This section reports results for Experiments 1–16 in terms of predictive performance and estimated poster-

iors. The hypothesis is that we should get better predictive performance by adding model errors to that part

of the model that is responsible for errors in simulated discharge. As such, we use predictive performance of

the different experiments to draw conclusions about where the main sources of error are in the Hymod

model for the basin studied here.

5.2.1. Predictive Performance

In this section we compare predictive performance of the model when adding model errors to (i) the quick

flow storages of themodel, (ii) the slow flow storage of themodel, and (iii) both quick and slow flow storages.

Performance is evaluated in terms of the criteria from section 4, that is, NSE, MAE, and RLS.

First, Figure 7 shows that adding noise on one of the quick flow reservoirs (Sq1, Sq2, and Sq3) results in better

predictive performance compared to adding noise on the discharge (Q) in terms of NSE, MAE, and RLS. This

Figure 6. Details on the update of the posterior of τ at the specified time in Figure 5 including (a) A, (b) B, and (c) C.
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improvement gets slightly better as noise is added further “upstream” in the model (from Sq3 to Sq2 to

Sq1) (Figure 7).

Second, adding noise to the slow flow reservoir (Ss) gives better predictive performance than adding noise to

any of the quick flow reservoirs, suggesting that model errors are more significant in the slow flow storage of

the model than in the quick flow storage. Adding noise to Ss not only improves performance for low flows,

but also leads to better high flow predictions (see Figure 8).

The next question is whether adding noise on both fast and slow flow storages of the model can further

improve performance. First, consider the case of adding noise on the ER, which according to the model

structure in Figure 2 leads to correlated errors on both fast and slow flow storages. Adding error on ER leads

to good predictive performance (Figure 7), similar to adding noise on the slow flow storage (Ss) alone. As an

alternative uncorrelated noise is added both on fast (Sq1) and slow (Ss) storages. This experiment is denoted

as Sq1Ss. Figure 7 shows that this experiment does not improve on the experiment where noise is added only

on Ss. Hence, the Ss experiment comes out as giving the overall best predictive performance (shown in

Figure S3). Finally, note in Figure 7 that updating Hymod parameters results in better performance com-

pared to keeping the Hymod parameters fixed. An exception is the higher NSE scores when using fixed ver-

sus updated parameters, which is likely due to the fact that the fixed parameters were obtained by prior

calibration with SCE‐UA, which maximizes NSE. Figure 7 further shows that fixing the parameters gives

a more rapid decrease in predictive performance when the prediction horizon increases from 1 to 3 days,

than the experiments where parameters were updated. For example, with noise on Ss, the NSE score

decreases from ~0.9 to ~0.8 when going from 1‐ to 3‐day ahead predictions with updated parameters,

whereas the NSE score decreases from >0.9 to ~0.7 when going from 1‐ to 3‐day ahead predictions with fixed

parameters (Figure 7).

5.2.2. Estimated Posteriors

This section presents the estimated posteriors of the Hymod parameters, as well as posterior of the model

noise precision. Results of adding error to the different quick flow reservoirs (Sq1, Sq2, and Sq3) are similar;

therefore, we only present results for model error on Sq1.

Figure 7. Predictive performance (for 1‐, 2‐, and 3‐day ahead predictions) when adding model error to different model

components, considering three criteria (NSE: first row, MAE: second row, and RLS: third row) and keeping parameters

either fixed (left column) or updating them using the EnKF (right column).
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We start with the posterior of precision (τ), which provides an estimate of the amount of model error that is

added on each flow or state variable. The temporal evolution of the posterior of precision τ for different

model error experiments is depicted in Figure 9, for both fixed and nonfixed Hymod parameters. Figure 9

shows that the precision fluctuates through time due to changes in the error of predicted discharge in each

time step. This time variation of precision reduces after the first half of the study period and it becomes rela-

tively stable in the second half of the simulation period.

Smaller precision values result in larger noise and greater potential for improvement by data assimilation.

The estimated precision for the case of adding error on the slow flow reservoir is low, up to 1.5, reflecting

large model errors, while estimated precision for the quick flow reservoir is high, up to 500, reflecting small

model errors. This agrees with the overall better predictive performance of experiment Par‐StrSs compared to

experiment Par‐StrSq1 (Figure 7). The amount of noise is also affected by the magnitude of each state; the

quick flow storages are generally quite small in magnitude, translating in small model errors (Figure 11).

Figure 8. Predictive performances (for 1‐, 2‐, and 3‐day ahead predictions) when adding model error to different model

components, separately, for high and low flows.
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Comparing experiment Par‐StrSq1Ss (last two plots in Figure 9) with experiments Par‐StrSs and Par‐StrSq1
shows that the estimated precisions by adding error on quick and slow flow reservoirs (Sq1 and Ss) simulta-

neously are smaller than adding error on just one state (Sq1 or Ss). For example, the Par‐StrSq1Ss experiment

results in larger model errors added to Ss (smaller values for τSs) compared to the Par‐StrSs experiment. In the

former experiment, τSs only applies to flows lower than 4 m3/s, whereas in the latter τSs applies to all flows.

Hence, by focusing only on lower flows, we find that the model error added to Ss increases.

Results in Figure 9 further show that the posterior values of precision for experiments with updated Hymod

parameters are higher than those with fixed Hymod parameters. This shows that uncertainty associated with

model error decreases by considering parameter uncertainty. This expected behavior is however reversed in

the experiment where model error is added on ER: Par‐StrER results in lower τ values (larger model errors)

compared to StrER. An explanation can be found in the value of parameter α, which is greater for StrER (0.2,

see Table 1) than for Par‐StrER (around 0.1, see Figure 10). Referring to Figure 2, a larger value for α trans-

lates into not only more flow going through the quick flow storages but also larger errors propagating from

ER to the quick flow storages (for a given error on ER). Conversely, for a given error on the quick flow

storages (and on Q), the noise on ER should be smaller when parameter α increases.

Next, temporal evolution of the Hymod parameter posteriors is illustrated in Figure 10. Parameter posteriors

for experiments Par‐StrQ (Figure 10a) and Par‐StrSq1 (Figure 10b) are similar. The only difference occurs for

parameter Rq, which in experiment Par‐StrSq1 is slightly higher than for Par‐StrQ. When adding error to the

Figure 9. Temporal evolution of the posterior of precision τwith 90% and 50% uncertainty bands for (a) StrQ and Par‐StrQ,

(b) StrSq1 and Par‐StrSq1, (c) StrSs and Par‐StrSs, (d) StrER and Par‐StrER, and (e) StrSq1Ss and Par‐StrSq1Ss; blue plots:

nonfixed Hymod parameters; red plots: fixed Hymod parameters.
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slow flow reservoir (Figure 10c), a noticeable jump occurs in the posterior of parameter β, as well as a minor

jump in the posterior of parameter α, both coinciding with a significant peak in the observed discharge

record. Similar behavior is observed when adding model error to ER (Figure 10d). The small inferred

value for parameter α indicates that most of the ER is routed through the slow reservoir (see Figure 2),

which explains the similar results for the ER and Ss experiments in Figure 10. Finally, comparing correlated

(i.e., Par‐StrER, Figure 10d) and uncorrelated, (i.e., Par‐StrSq1Ss, Figure 10e) model errors on both quick and

slow flow reservoirs again results in similar parameter posteriors, with slightly larger values for parameter β

in experiment Par‐StrSq1Ss.

For completeness, temporal evolution of the Hymod state posteriors is given in Figure 11. These results show

that (1) posterior uncertainty is smallest for the states that are strongly related to observed discharge, that is,

Ss and Sq1, and is largest for states further “upstream” in the model, that is, SMc, SW1, and SW2 (see

Figure 2). The first snow reservoir (SW1) especially, which corresponds to the low elevation zone, is

Figure 10. Temporal evolution of the Hymod parameter posteriors (β, α, Rs, and Rq) with 90% and 50% uncertainty bands

for (a) Par‐StrQ, (b) Par‐StrSq1, (c) Par‐StrSs, (d) Par‐StrER, and (e) Par‐StrSq1Ss. Precipitation and predicted and observed

discharge time series are also shown.
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associated with large posterior uncertainty, suggesting it has weak correlation with observed river discharge;

(2) the experiments that have a jump in the posterior for parameter β (see Figure 10) have a corresponding

jump in the posterior for SMc. This is due to a strong posterior correlation between SMc and parameter β

(given that parameter Cmax is kept fixed), as shown in Figure S4, with smaller values for β corresponding

to larger values of SMc.

6. Discussion

This section discusses (i) what the results tell us about model errors of Hymod for short‐term streamflow pre-

diction in the Roudak catchment and (ii) significance and possible extensions of the proposed approach for

sequential estimation of model errors (i.e., parameter τ).

Figure 11. Temporal evolution of the Hymod state posteriors (SW1, SW2, SMc, Ss, and Sq1) with 90% uncertainty bands

for different experiments: (a) Par‐StrQ, (b) Par‐StrSq1, (c) Par‐StrSs, (d) Par‐StrER, and (e) Par‐StrSq1Ss.
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6.1. Hymod Model Errors

The Hymod performance for Roudak catchment improved by accounting for model errors assigned to the

different states (Figure 7) to account for misspecified uncertainty in inputs. It was found that the largest

improvement is obtained by accounting for model errors in the slow flow component (Ss) of Hymod, result-

ing in improved streamflow predictions for both low flow and high flow conditions (Figure 8). This suggests

that the main errors for simulating streamflow in this basin originate in the slow‐flow (groundwater) com-

ponent of Hymod. Considering uncertainty in the Hymod parameters together with model errors further

improved predictive performance for two and three days ahead predictions.

Comparison between the worst performing experiment (StrQ) and the best performing experiment (Par‐

StrSs) (see Figure 7), shows that RLS and MAE for Par‐StrSs are much improved compared to the StrQ

experiment. Also temporal variation of RLS for these two experiments can be compared by seeing

Figures 5 and S3. The improvements are significant during low flow periods, although the predicted high

flows are also improved. Nevertheless, there are remaining deviations between observed and predicted

flows, especially for peak flows in the period April–May 2015. Note that this is also the period during which

a jump can be observed in the posterior of parameter β, suggesting there are additional errors at play that are

not accounted for with the current approach.

To understand the reason for temporal variation of β, the formulation of Hymod should be considered. After

the peak flow in April–May 2015, parameter β starts decreasing (Figure 10), causing an increase in SMc

(Figure 11) following the posterior correlation between these two variables (Figure S4). The posterior corre-

lation between β and SMc (for fixed Cmax) follows from the Hymod equations relating SMc and ER: The plots

in Figure S5 illustrate that the same ER (and thus the same simulated discharge) results by simultaneously

decreasing β and increasing SMc. This suggests that updating β is less effective than updating other Hymod

parameters as its variation is compensated by variation in SMc. This assumption is confirmed by running an

experiment similar to Par‐StrSs but now keeping β fixed. The two experiments, that is, Par‐StrSs with fixed

and nonfixed β, have indeed similar predictive performance: NSE of 0.86 and 0.87, MAE of 0.74 and 0.73,

RLS of−0.71 and−0.72 with fixed β and nonfixed β respectively. In spite of difficulties in estimating β, given

its tight correlation with SMc, streamflow prediction is improved by considering uncertainty of Hymod para-

meters together with model errors, and the estimated Hymod parameters become nearly stable in the second

half of the study period (except for β).

The predicted high flow in April–May 2015 for the experiments with error added on Ss, Sq1, Sq1 Ss, and ER is

illustrated in Figure S6. The predicted discharge improved from Par‐StrQ to Par‐StrSs, with no further

improvement for experiment Par‐StrSq1. A potential reason for not achieving improvement in predicted high

flow in experiment Par‐StrSq1 is that the streamflow record is dominated by low flow periods, during which

storage Sq1 is close to 0, which requires very little noise. This results in posterior estimates of τSq1 that are

quite large (i.e., up to 400 in Figure 9), corresponding to small model errors being added to Sq1 throughout

the flow record. To filter out low‐flow impacts on the estimation of τSq1 , experiments StrSq1Ss and Par‐

StrSq1Ss estimated two separate τ values, one for model errors on Ss during low flow conditions (i.e.,

Q < 4 m3/s), and another for model errors on Sq1 during high flow conditions (i.e., Q > 4 m3/s). However,

the Par‐StrSq1Ss experiment did not give any significant improvement for peak streamflow prediction com-

pared to Par‐StrSs, (Figure S6) although it does somewhat attenuate temporal changes in parameter β during

April–May 2015 (see Figure 10).

Besides model errors, other errors may also contribute to underestimating the peak flow in April‐May 2015.

For example, measured streamflow typically is less accurate at high flows, especially when discharge exceeds

values used to determine the rating curve. As such, the 10% observation error assumed here (equation (6))

could be refined by careful rating curve error analysis. Likewise, rainfall errors in this mountainous catch-

ment are likely muchmore complex than assumed here (50% error, equation (4)); more refined error models

could be considered to evaluate their impact on peak flow predictions.

6.2. Recursive Estimation of Model Errors

Our approach for sequentially estimating and updating model noise parameter τ via a gamma density

approximation of its posterior is a new contribution to the hydrological literature. The approach is closely
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related to Anderson (2007); the latter can be understood as maintaining a Gaussian density approximation of

the posterior of the variance through time. Hence, a comparison between the two approaches comes down to

the choice of a gamma approximation for the noise precision versus a Gaussian approximation for the noise

variance. The computational effort for either approach is small, so that preference should be given to the

highest quality approximation. A priori, noise parameter τ cannot be negative, making a gamma

approximation more suitable a priori. However, operationally a Gaussian approximation may still work,

as long as the posterior is not close to 0. Figure 12 illustrates how non‐Gaussian the approximated

posteriors for precision (τ) and the corresponding variance are in our case study. The gamma

approximations in these plots were obtained with the approach proposed in this paper, whereas the

Gaussian approximations have the same mean and variance as the gamma approximations. These results

show that the posterior is initially non‐Gaussian and asymmetric, but tends to become more Gaussian as

more data are assimilated. This is a common tendency in large‐data settings (Walker, 1969), although

application of the EnKF also tends to make posteriors more Gaussian (Zhou et al., 2011). This suggests

that a Gaussian approximation may be fine in this case, except for early assimilation times. The gamma

approximation has the advantage of also applying to early times without adding any significant

computational cost. For example, comparing computing time for experiments with the same number of

predicted days, that is, 1, 2, or 3 days, shows Experiment 2 (with updating the precision posterior) is 8%

slower than Experiment 1 (without updating the precision posterior).

When noise is added to more than one state, as was done in the ParStrSq1Ss experiment, the proposed

approach a priori assumes independent noise on the different states. It may hence be useful to extend the

approach to allow for correlated noise. This could for example be done using the scaling factor approach

(Brankart et al., 2010), where the correlation structure is fixed a priori and a single scaling factor is estimated

recursively. The posterior for this scaling factor could again be approximated by a gamma distribution, as

long as efficient update equations can be derived. Going beyond the scaling factor approach, the entire state

noise correlation or covariance matrix could be estimated recursively from the data. The advantage of this

approach is that it makesminimal a priori assumptions about the noise. Extending our sequential estimation

approach to this case would require a parametric approximation to the posterior covariance matrix; the

Wishart distribution as used in Ueno and Nakamura (2016) could be a natural candidate for this purpose.

7. Conclusions

This paper introduced and applied a novel recursive Bayesian approach for estimating model errors of a con-

ceptual rainfall‐runoff model in a data assimilation context. The approach accounts for model errors by add-

ing time‐dependent random noise to the internal states (storages) of the hydrological model. The level of

noise is controlled by a precision parameter, which is estimated recursively (online) from rainfall‐runoff data

using a novel gamma density approximation technique. This results in automatic tuning of the noise in the

Figure 12. (top row) Gamma (black) and Gaussian (red) approximations of the posterior of noise precision τ at different

times. (bottom row) Corresponding posteriors of the noise variance and their Gaussian approximations for experiment

Par‐StrSs.
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EnKF equation for updating hydrological model states and parameters, and as such can be thought of as a

form of automatic ensemble inflation/deflation that avoids the need for manual specification of noise levels

in an EnKF. The recursive approach for estimating model errors could be further extended to the joint esti-

mation of correlated noise on multiple model states.

Application of this technique to short‐term rainfall‐runoff prediction for a specific case study basin in

Iran shows that it is effective in improving probabilistic predictions with the Hymod conceptual

rainfall‐runoff model. To gain insights into the source of model errors, noise was added to different

model states, while also accounting for other sources of uncertainty (i.e., precipitation, temperature,

initial states, and parameters), and the predictive performance was assessed for each case. The best

performance was achieved by adding error on the slow flow component of the model, which improved

both slow and quick flow predictions. Furthermore, accounting for uncertainty of hydrologic model

parameters improved model performance, especially for three days ahead predictions. Although results

showed improvement in both low and high flow predictions, not all high flows could be completely

captured, suggesting there are other errors at play that are not accounted for by the methodology used

here. Extreme peak flows may have a different error structure compared to other parts of the discharge

record, and as such may require special treatment. Finally, we note that while the methodology is

general, the conclusions about model error are specific for the basin (snow‐dominated) and model

(Hymod) used here. For example, in rain‐dominated and humid basins one would expect models errors

in the quick flow model component to be important.
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Appendix A.

This appendix derives the update equations, equations (14)–(16) in the text, for recursively updating the pos-

terior of precision τ of the model errors. For simplicity, we rewrite equations (13) in the text by omitting the

time index and the explicit dependence on dataD, and by writing the gamma prior asGa(τ|α0,β0), where α0 is

the shape parameter and β0 is the rate parameter. From equation (13), the posterior for τ can then be

written as

p τð Þ ∝ Ga τjα0; β0ð Þ∫x∫μN μjμμ; vμ

� 	
N xjμ; τ−1
� �

Njxμx ; vxð Þdμdx (A1)

Integrating out x yields

p τð Þ ∝ Ga τjα0; β0ð Þ∫μN μjμμ; vμ

� 	
N μx jμ; τ

�1 þ vx
� �

dμ (A2)

And integrating out μ yields

p τð Þ∝Ga τð jα0; β0Þ f τð Þ (A3)

where f τð Þ ¼N μx jμμ; τ
−1 þ vx þ vμ

� 	
. This gives p(τ) as a nonstandard distribution, but we can approx-

imate it with a gamma distribution q(τ) by derivative matching, that is, by matching first and second

derivatives of p(τ) and q(τ) (in log scale) at a given point. Taking the gamma density q(τ) and its

derivatives:

logq τð Þ∝ α−1ð Þ log τ−βτ (A4)

d

dτ
logq τð Þ ¼

α−1

τ
−β (A5)

τ2
d2

dτ2
logq τð Þ ¼ − α−1ð Þ (A6)

The corresponding expressions for logp(τ) and its derivatives are

logp τð Þ∝ α0−1ð Þlogτ−β0τ þ logf τð Þ (A7)

d

dτ
logp τð Þ ¼

α0−1

τ
−β0 þ

d

dτ
logf τð Þ (A8)

τ2
d2

dτ2
logp τð Þ ¼ − α0−1ð Þ þ τ2

d2

dτ2
logf τð Þ (A9)

where

logf τð Þ ¼ −

1

2
loga−

b2

2a
(A10)

d

dτ
log f τð Þ ¼

1

2τ2a
−

b2

2τ2a2
(A11)

τ2
d2

dτ2
log f τð Þ ¼ −

1

τ a
þ

1

2τ2a2
þ

b2

τa2
−

b2

τ2a3
(A12)

with a = τ−1+vx+vmu and b = μx − μμ. Equating derivatives of logp(τ) and logq(τ) and solving for α and β

yields the following update equations:
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α ¼ α0−τ
2 d

2logf τð Þ

dτ2
(A13)

β ¼ β0−
d logf τð Þ

dτ
− α−α0ð Þτ−1 (A14)

τ ¼
α−1þ w

β
(A15)

wherew is considered equal to 0.5 to match derivatives at a point in between mode (w= 0) and mean (w= 1)

of the gamma distribution. Equation (A15) updates τ to a point in between mode and mean of the new

approximation. This can be thought of as a modified Newton update. Iteratively applying these equations

results in τ eventually becoming equal to the mean of p and yields a gamma approximation q with the same

derivatives (in log‐scale) as p at the mean of p. Alternatively, the last equation can be replaced by τ ¼ α−1
β
,

which leads to τ becoming equal to the mode of p, and a resulting gamma approximation q with the same

derivatives as p at the mode of p.
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