000877413 001__ 877413
000877413 005__ 20220930130241.0
000877413 0247_ $$2doi$$a10.1002/admi.202000508
000877413 0247_ $$2Handle$$a2128/25753
000877413 0247_ $$2WOS$$aWOS:000537448200001
000877413 037__ $$aFZJ-2020-02176
000877413 082__ $$a600
000877413 1001_ $$0P:(DE-Juel1)176824$$aLi, Jie$$b0$$ufzj
000877413 245__ $$aMonitoring of Dynamic Processes during Detection of Cardiac Biomarkers Using Silicon Nanowire Field‐Effect Transistors
000877413 260__ $$aWeinheim$$bWiley-VCH$$c2020
000877413 3367_ $$2DRIVER$$aarticle
000877413 3367_ $$2DataCite$$aOutput Types/Journal article
000877413 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601032619_15242
000877413 3367_ $$2BibTeX$$aARTICLE
000877413 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000877413 3367_ $$00$$2EndNote$$aJournal Article
000877413 520__ $$aNumerous sensitive nanobiosensors are reported for various bioassay applications as a result of the development of materials science and nanotechnology. Among these sensors, nanowire (NW) field‐effect transistors (FETs) represent one of the most promising practical biosensors for ultrasensitive clinical diagnostic tools. Most studies mainly focus on how to achieve a lower detection limit but pay less attention to the long settling time effect for the detection of very small concentrations of molecules in a solution. In this study, single silicon NW FETs with long‐term stability is fabricated to investigate the settling time process at small concentrations of cardiac biomarkers relevant to myocardial diseases. It is found that the settling time strongly depends on the type of molecule, its charge state and analyte concentrations. For low concentrations, the time for measurement signals to settle down is relatively long. Therefore, it is essential to understand the settling time effect in Si NW FET‐based biosensing processes to ensure the accuracy and reliability of the detection signal. An alternative approach is demonstrated to circumvent the long measurement time by utilizing reaction kinetics parameters for the fast determination of low‐concentration detection, which also benefits the optimal balance between suitable detection time and reliable detection results.
000877413 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000877413 588__ $$aDataset connected to CrossRef
000877413 7001_ $$0P:(DE-Juel1)167225$$aKutovyi, Yurii$$b1$$ufzj
000877413 7001_ $$0P:(DE-Juel1)164241$$aZadorozhnyi, Ihor$$b2
000877413 7001_ $$0P:(DE-Juel1)171802$$aBoichuk, Nazarii$$b3$$ufzj
000877413 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b4$$eCorresponding author
000877413 773__ $$0PERI:(DE-600)2750376-8$$a10.1002/admi.202000508$$gp. 2000508 -$$n15$$p2000508$$tAdvanced materials interfaces$$v7$$x2196-7350$$y2020
000877413 8564_ $$uhttps://juser.fz-juelich.de/record/877413/files/admi.202000508.pdf$$yOpenAccess
000877413 8564_ $$uhttps://juser.fz-juelich.de/record/877413/files/admi.202000508.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000877413 8767_ $$92020-05-08$$d2020-06-04$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$padmi.202000508
000877413 909CO $$ooai:juser.fz-juelich.de:877413$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000877413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176824$$aForschungszentrum Jülich$$b0$$kFZJ
000877413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167225$$aForschungszentrum Jülich$$b1$$kFZJ
000877413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164241$$aForschungszentrum Jülich$$b2$$kFZJ
000877413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171802$$aForschungszentrum Jülich$$b3$$kFZJ
000877413 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b4$$kFZJ
000877413 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000877413 9141_ $$y2020
000877413 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000877413 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000877413 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV MATER INTERFACES : 2018$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000877413 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000877413 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000877413 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000877413 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000877413 980__ $$ajournal
000877413 980__ $$aVDB
000877413 980__ $$aUNRESTRICTED
000877413 980__ $$aI:(DE-Juel1)IBI-3-20200312
000877413 980__ $$aAPC
000877413 9801_ $$aAPC
000877413 9801_ $$aFullTexts